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Yardstick competition is a regulatory scheme for local monopolists (e.g., hospitals), where the monopolist’s

reimbursement is linked to performance relative to other equivalent monopolists. This regulatory scheme is

known to provide cost-reduction incentives and serves as the theoretical underpinning behind the hospital

prospective reimbursement system used throughout the developed world. This paper uses a game-theoretic

queueing model to investigate how yardstick competition performs in service systems (e.g., hospital emer-

gency departments), where in addition to incentivizing cost reduction the regulator wants to incentivize

waiting time reduction. We first show that the form of cost-based yardstick competition used in practice

results in inefficiently long waiting times. We then demonstrate how yardstick competition can be appro-

priately modified to achieve the dual goal of cost and waiting-time reduction. In particular, we show that

full efficiency (first-best) can be restored if the regulator makes the providers’ reimbursement contingent on

their service rates and is also able to charge a provider-specific “toll” to consumers. More importantly, if

such a toll is not feasible, as may be the case in healthcare, we show that there exists an alternative and

particularly simple yardstick-competition scheme, which depends on the average waiting time only, that

can significantly improve system efficiency (second-best). This scheme is easier to implement as it does not

require the regulator to have detailed knowledge of the queueing discipline. We conclude with a numerical

investigation that provides insights on the practical implementation of yardstick competition for hospital

Emergency Departments and also present a series of modelling extensions.
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1. Introduction

Services constitute a large part of the developed world economy and, in some cases, they operate

as regulated monopolies. A case in point is the hospital industry, which in 2014 constituted 5.6%

of the US economy, and is highly regulated by bodies such as the Centers for Medicare & Medicaid

Services (CMS), which are responsible for approximately 45% of hospital reimbursements (CMS

2014).1 Despite this, academic research on the regulation of service monopolies has not received

1 In other developed world healthcare systems, such as the UK, hospitals are just as large a part of the national
economy, and most of their reimbursement comes from a single government-funded payer that acts as the regulator.
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as much attention as that of “production” monopolies, for example, defense systems, water, and

energy (Laffont and Tirole 1993, Roques and Savva 2009).

This paper focuses on a specific regulatory scheme, yardstick competition, in which the regu-

lator induces artificial competition between local monopolists by rewarding firms on the basis of

their performance relative to each other. Yardstick competition has been shown to provide incen-

tives for monopolists to minimize production costs (Shleifer 1985) and has been widely applied to

the reimbursement of regulated utilities (e.g., electricity (Jamasb and Pollitt 2000) and tertiary

care – through CMS’s Diagnosis-Related Group (DRG) prospective reimbursement in the US and

equivalent schemes in other developed economies (Fetter 1991)). This paper shows that yardstick

competition fails to incentivize investment in wait-time reduction in service systems. In fact, this

may be a contributing factor to the undesirably long waiting times observed in some service systems

that are reimbursed through yardstick competition, e.g., hospital care (GAO 2009). To incentivize

wait-time reduction through capacity investment or process re-engineering without compromising

incentives for cost control, the yardstick competition scheme must be modified. This paper proposes

one such modification.

What is yardstick competition? Historically, franchised monopolies had been subject to

“cost-of-service” regulation, where the regulated firm’s price is set equal to the (marginal) cost of

production, along with a transfer payment, if needed, to ensure that the monopolist breaks even.

The fee-for-service reimbursement model, which had been used by CMS in reimbursing US-based

hospitals up to 1983, is one such example (Mayes 2007). Besides simplicity, the advantage of this

regulatory scheme is that it avoids the higher monopoly price and the associated welfare loss,

whilst providing incentives for the firm to continue production. The disadvantage is that it does

not provide incentives to contain the cost of production.

A better alternative would be to dissociate the firm’s price from the firm’s cost of production,

and instead set it equal to an exogenous benchmark. Setting this benchmark optimally, however,

would require the regulator to know as much about the available cost-reduction technologies as the

regulated firm. Yardstick competition gets around this difficulty by making use of the production

cost of other equivalent monopolists to infer a firm’s attainable costs, which will then serve as

the exogenous benchmark. For example, the regulator could choose to reimburse the monopolist

at the average production cost of all other monopolists. By doing so, the regulator forces the

firms to engage in cost-reduction competition, akin to a tournament. Shleifer (1985) shows that, in

the unique symmetric Nash equilibrium of this game, all firms invest in cost reduction optimally.

That is, it achieves the same cost-reduction investment as that chosen by the regulator under

full information. Since the price is set through observable and verifiable benchmarks, this scheme
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can be implemented using accounting data without requiring symmetric information between the

regulator and the regulated firms (Laffont and Tirole 1993).

Yardstick competition and waiting times. The theory outlined above abstracts away one

important aspect of service provision: waiting times. Effectively, it assumes that production is

instantaneous, or equivalently, that consumers’ cost of waiting is negligible. This assumption may

fit product-based monopolies, but it is less realistic for service settings where long waiting times

are costly and, as in the case of hospital Emergency Departments (EDs), even dangerous. It is,

therefore, important that, in addition to cost reduction, the regulation of service systems should

also incentivize wait-time reduction.

To do this, we present a game theoretic queueing model of yardstick competition, where a

regulator is responsible for multiple identical service providers that act as local monopolists. The

regulator’s objective is to maximize total welfare by dictating the price that customers are charged

and any transfer payments made to the service providers. Service providers are assumed to be

profit maximizers and, given the price and transfer payment set by the regulator, decide how much

to invest in cost- and wait-time-reduction effort. Finally, customers are heterogeneous in their

willingness to pay for the service, leading to an endogenous demand function that is decreasing in

both the price as well as the waiting time they expect to incur. A crucial feature of our model,

which explains why optimal regulation may be difficult, is that the providers’ cost of investment

in technology and the customer demand function are not known to the regulator. We note that

extant models that ignore the cost of waiting (e.g., Shleifer 1985) are a special case of the model

presented here.

Using this model, we show that, in contrast to product-based monopolies, applying the standard

cost-based yardstick competition scheme to service monopolies results in inefficiently long waiting

times, and may even result in inefficiently high costs due to two types of inefficiencies. First,

customers will over-join the service system compared to first-best, a result first noted in Naor

(1969). This is due to a negative externality: a customer’s decision to join the system will lead to

an increase in the expected waiting time of others. This increase does not feature in his personal

calculation as to whether to join the system or not. Second, cost-based yardstick competition fails

to generate incentives for the service providers to increase capacity.

To resolve these two inefficiencies, yardstick competition should be modified in two ways. First,

the price that customers pay to access the service should be made higher than the costs of providing

the service estimated through the yardstick competition benchmarks. This higher price constitutes

a form of “toll” and is equal to the aggregate customer utility that a customer’s joining decision

displaces (Naor 1969). Second, the monopolists’ reimbursement should have a component that
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depends on their investment in wait-time reduction. More specifically, the monopolists’ reimburse-

ment should include a component that depends on the difference between her service rate and the

average service rate of all other monopolists that serve as the benchmark. This modified yardstick

competition achieves first-best outcomes on both cost and waiting-time reduction and, just like

cost-based yardstick competition, can be implemented using accounting data on costs and waiting

times, along with some information on the queueing discipline.

An essential feature of the yardstick competition scheme discussed above is that customers are

charged a provider-specific fee for accessing the service. In many healthcare settings, this is not the

case; care is either free at the point of access, or patients are charged a fixed insurance deductible.

We show that, if customers are charged an exogenous fee (which could be zero), then there is an

inefficiency due to the suboptimal customer joining behavior. Nevertheless, there is an alternative

yardstick competition scheme that still achieves second-best, that is, there is no additional loss of

welfare due to underinvestment in either cost or waiting-time reduction. Furthermore, this scheme

is easier to implement – the regulator needs to observe the average customer waiting time and total

provider costs, but does not need to know anything about the queueing discipline or how the costs

are split between fixed and variable.

We also present a detailed numerical study that investigates the magnitude of the welfare loss

associated with second-best outcomes compared to first-best, and the dependence of the equilibrium

outcomes on the cost of waiting. One interesting finding is that, in contrast to equilibrium waiting

times, total welfare is not very sensitive to the cost-of-waiting parameter. This suggests that the

service provider may be able to use the cost-of-waiting parameter as a lever to shift the equilibrium

outcome associated with the modified yardstick competition to one with lower waiting times albeit

at higher costs, without significantly affecting total welfare.

Finally, in an electronic companion (EC), we present a series of extensions that explain how

yardstick competition can be implemented in settings with demand-side competition between pro-

viders, multiple customer classes, time-varying arrival rates, more general cost structures, more

general queueing disciplines including queueing networks. We also discuss how the regulator could

adjust the yardstick competition scheme to account for heterogeneity between the local monopolists

based on exogenous characteristics.

Applications. One immediate application of the modified yardstick competition model proposed

by this paper is the regulation of hospitals and hospital EDs. First, prospective payments and

cost-based yardstick competition have been widely adopted around the world as the primary mode

of reimbursement for this industry.2 Second, waiting time to receive emergency care is both costly

2 The form of yardstick competition used in hospital reimbursement classifies acute patients into Diagnosis-Related
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and, in many cases, excessively long.3 This paper provides an explanation as to why there is such

a systematic underinvestment in reduction of waiting times in emergency care. It also provides

guidelines on how regulators could modify the reimbursement system already in use to provide

incentives for waiting time reduction. More specifically, the second-best scheme that we propose is

particularly useful, as it requires little additional information to implement (just average waiting

time at the ED)4 and achieves outcomes that cannot be improved upon without changing the way

that patients are charged for accessing emergency care.

Beyond healthcare and hospital reimbursement, our work serves as an introduction to the notion

of yardstick competition to the operations management community. More specifically, yardstick

competition might be a useful tool for other service systems that operate as local monopolies

(e.g., governmental agencies, such as the Department of Motor Vehicles and the US Social Security

Administration offices; (former) quasi-state monopolies, such as the post office; airport or border

security checkpoints), and for service firms to incentivize better performance for individual servers.

2. Literature Review

The observation that relative-performance evaluation is a useful tool for setting incentives has been

made by Holmstrom (1982), Nalebuff and Stiglitz (1983), and Shleifer (1985) in related contexts:

the first focuses on curbing free riding in teams, the second on optimal risk sharing, and the

third on cost-cutting incentives for regulated firms. In fact, the term “yardstick competition” is

used by Shleifer (1985) to describe this form of regulation. From a practical perspective, yardstick

competition has been implemented in industries such as electricity production (Jamasb and Pollitt

2000) and water and sewage (Sawkins 1995).

Several extensions to the model of yardstick competition have been presented in the literature.

For example, Laffont and Tirole (1993), pp. 84-86 augment the model of yardstick competition

Groups (DRGs) based on their diagnosis, existing complications and comorbidities, and patient-specific characteristics,
for example, age (see Fetter (1991)). Patient episodes within a DRG require a similar bundle of services and goods
to be diagnosed and treated. Hospitals are then reimbursed a fixed amount per patient that depends only on the
patient’s DRG. The amount is set to the average of the reported (and audited) cost of treating patients of the same
DRG across all hospitals, adjusted for exogenous hospital characteristics such as local wages and training costs for
teaching institutions. Since its introduction by CMS in the US in the 1980s, the system has been adopted by private
insurance firms and healthcare payers throughout the developed world (Mayes 2007).

3 In the US, patients who should have been seen in less than 1 minute waited for 28 minutes on average (GAO 2009).
Similarly, ED wait times in England rose by one-third in November 2015 compared to November 2014 (Siddique
2016), and 10% of patients spent at least 8 hours in Canadian EDs (CIHI 2012). Furthermore, delays in the ED have
been associated with a number of adverse outcomes, such as patient dissatisfaction, higher rates of medical errors,
higher mortality rates, and more patients leaving without receiving treatment (Batt and Terwiesch 2015).

4 In fact, regulators around the world have started collecting waiting-time data. For example, Monitor, the UK hospital
regulator, collects data on ED waiting times and has placed an ad hoc target that at least 95% of patients have to be
admitted or discharged within 4 hours of arriving at the ED with financial penalties for failure to comply (Siddique
2016). Similarly, CMS has started collecting data on ED waiting times, which are reported on the Hospital Compare
website (CMS 2016b).
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to regulate firms whose costs are imperfectly correlated. Sobel (1999) examines the case where

transfers are costly to show that yardstick competition may discourage investment. This setting

has been examined further in Lefouili (2015). Dada and White (1999) examine the financial risks

associated with prospective payment systems that rely on yardstick competition in the context

of hospital reimbursement. More relevant to our work are models that use prospective payments

to incentivize improvements in additional dimensions of performance, such as quality. Examples

include Ellis and McGuire (1986), Pope (1989), Ma (1994), and Tanger̊as (2009), where the general

finding is that quality is better served by more complicated forms of yardstick competition. Our

work adds to this literature because, unlike quality, waiting times are: i) endogenous to customer

behavior and generate an externality on the customer side; ii) governed by well-understood non-

linear dynamics that need to be accounted for; iii) often easier to quantify and less controversial

to compare across providers than other quality measures (e.g., in-hospital mortality).

In addition to the literature on yardstick competition, this paper also contributes to the opera-

tions management (OM) literature that examines incentives and competition in queueing systems.

Traditionally, queueing theory, which is well-surveyed in Kleinrock (1975), has been concerned with

the mathematical description and optimization of queueing systems without considering customer

behavior or agency issues on behalf of firm management. Early attempts to include such economic

considerations are reviewed by Hassin and Haviv (2003) and more recent work in Hassin (2016). Our

work brings together elements from: i) the literature on strategic customer behavior in monopolistic

queueing systems, which was first studied in Naor (1969) for observable queues and extended to

unobservable queues by Edelson and Hilderbrand (1975) and multiclass queues by Mendelson and

Whang (1990) and Afeche (2013); and ii) the literature on queueing games where service providers

compete based on price and congestion (e.g., Cachon and Harker (2002), Cachon and Zhang (2006),

and Allon and Federgruen (2008)). Closest to our work are the studies of queueing games in the

context of hospital/ED congestion (e.g., Lee and Cohen (1985)) and ambulance diversion (e.g., Deo

and Gurvich (2011)). In contrast to this stream of literature, service providers in our setting do

not compete directly. Instead, competition is induced by the regulator through the reimbursement

mechanism. Furthermore, our work is complementary to the aforementioned papers on ambulance

diversion, as it focuses on hospital reimbursement mechanisms that incentivize optimal investment

in capacity, which, as a side effect, may make the need to divert ambulances less prevalent.

Our work is also related to the OM literature on performance-based incentives in services in

general (Akan et al. 2011, Bakshi et al. 2015, Hasija et al. 2008, Kim et al. 2007, Kim et al. 2010, Ren

and Zhou 2008) and in healthcare specifically (So and Tang 2000, Lee and Zenios 2012, Adida et al.

2016, Guo et al. 2016, Zorc et al. 2017, Andritsos and Aflaki 2015, Jiang et al. 2016). The last two

papers also consider direct competition between providers (i.e., a queueing game) in the presence
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of performance-based incentives. Our paper differs, as the performance-based incentives that we

consider are not set exogenously by the regulator, but are the result of endogenous benchmarks.

This is an important difference because it generates (indirect) competition between otherwise

monopolistic providers and, as we show in this paper, may be easier to implement, as it places less

onerous informational burden on the regulator.

3. Model Description

The model considers the interaction between three parties: the regulator, the service provider, and

the customers. The regulator has N ≥ 2 identical service providers under his jurisdiction and has

the ability to set the price that customers are charged. The regulator may also decide to award

an additional transfer payment to the service providers, which may depend on any observable and

verifiable quantity. Customers observe how much they need to pay for service and decide whether

to request service, which is provided on a first-come-first-served basis. As a result, customers may

experience a costly wait, which we model explicitly using queueing theory. Finally, the service

providers act as risk-neutral local monopolists. They observe the price and transfer payment set by

the regulator and, given customer behavior, decide how much to invest in the cost- and wait-time-

reduction effort. We present the details of the decisions and payoffs of each of the three parties and

discuss how our model applies to the hospital emergency care setting in §§3.1-3.3.

3.1. Service Environment, Customer Utility and Equilibrium Arrival Rate

We assume that, within the catchment area of each service provider, there is a large population of

customers who may experience a service need with an exogenous probability. The aggregate arrival

rate of service needs may then be modeled as a Poisson process with rate Λ per unit time, even if

customers are strategic, see Lariviere and Van Mieghem (2004). Each customer with a service need

makes a decision whether to visit the service provider to receive service on a first-come-first-served

basis, or use their outside option which, without loss of generality, we assume has a value of zero. In

the case of emergency care, these assumptions reflect the case where patients have a single ED that

they would consider visiting, either due to prohibitive transportation costs, informational frictions,

or idiosyncratic preferences for a specific ED, for example, the closest (Brown et al. 2015). In this

case, Λ would reflect the number of patients per unit time that exhibit a symptom (e.g., chest pain)

for which they would consider visiting the ED. Since the patients exhibit the same symptom, they

would all be classified in the same triage category; therefore, first-come-first-served is a reasonable

assumption. If patients choose not to visit the ED, their outside options could be to use primary

care or to not seek treatment. We present extensions to multiple customer classes, non-stationary

arrivals, and demand-side competition between providers in the EC.
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Each customer’s utility from receiving service is comprised of three components. The first is the

benefit from the service, r, which is net of any indirect costs associated with the service (e.g., net

of transportation costs). We assume the value of service, r, to be heterogeneous across customers.

The proportion of customers who value the service less than x≥ 0 is given by Θ(x). By definition,

Θ(x) is non-negative and increasing. We also assume that its derivative, which we denote with θ,

is strictly positive everywhere in [0,∞).5 In the ED setting, the benefit, r, denotes the value that

patients place on treatment and it is natural to assume that it is heterogeneous across patients

due to the variability in the severity of patients’ conditions, which is present even within the same

triage category. The second component of customers’ utility is the price of the service, p. In the

ED setting, this may reflect the co-payment for an ED visit, which may well be zero. The third

component is the cost of waiting to receive service (similar to Dai et al. (2016) and Wang et al.

(2010)), which we assume to be t per unit time. In general, it reflects opportunity cost, and in

the ED setting in particular, it may also reflect the monetary value of the anxiety, pain, and

inconvenience that patients might experience until they are diagnosed and/or treated. We assume

heterogeneity in this cost to be less pronounced than that in the benefit from receiving the service

and, for tractability purposes, we model this as homogeneous across customers. Throughout we

model customers’ cost of waiting as a linear function of the waiting time, although, with minor

modifications, our results hold for any convex increasing function of the waiting time as well.

More formally, the utility that each customer expects to receive from seeking service is given by

r − tW (λ,µ)− p, where W (λ,µ) denotes the expected waiting time, given the rate of customers

arriving to the service provider, λ, and the actions of the service provider that result in increasing

throughput, which are summarized by the variable µ (see also §3.2). Throughout, we assume that

W (λ,µ) is increasing in λ and decreasing in µ, and that for any λ∈ (0, µ)

W (λ,µ)>W (0, µ) and lim
λ→µ

W (λ,µ) =∞. (1)

These reasonable assumptions imply that some delay is inevitable, and it is not possible to run the

system close to 100% utilization without excessive delays. These assumptions clearly hold for the

M/M/1 queue and for any multiple-server queue with random service and/or interarrival times.

Any customer with positive utility will seek service, and the equilibrium arrival rate, λ(p,µ), is

given by the unique solution of the equation

λ(p,µ) = ΛΘ̄ (p+ tW (λ(p,µ), µ)) , (2)

5 To avoid subtle technical questions and to facilitate game-theoretic analysis, we assume that all functions defined
are twice differentiable.
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where Θ̄(r) := 1−Θ(r) and λ(p,µ)<µ. If, for example, the service is provided in an M/M/1 queue,

this equation reduces to

λ(p,µ) = ΛΘ̄

(
p+

t

µ−λ(p,µ)

)
. (3)

We note that the formulation above assumes that customers do not observe the actual waiting

time when they make the decision to seek service. This is consistent with many practical settings,

including EDs where patients have little visibility of actual waiting times before they visit the ED

(see Chapter 3 of Hassin and Haviv (2003) for an excellent review of the literature on unobservable

queues and its applications). Nevertheless, customers are assumed to have accurate beliefs about

expected waiting times, which they may have formed through repeated interactions with the service

provider, word of mouth, or online tools that publish average ED waiting times (CMS 2016b).

3.2. Service Provider’s Profit and Actions

We next discuss the profit maximization problem of one service provider of the N identical service

providers. For simplicity, and in order to generate results that are comparable with extant litera-

ture, we present a single-period model where the reimbursement mechanism, which consists of a

customer price, p, and transfer payment, T , is set by the regulator at the beginning of the period.

The duration of this period is much longer than the average patient-interarrival time. Given the

reimbursement mechanism and the customers’ equilibrium arrival rate, λ(p,µ) given in (2), the

service provider’s profit per unit time (throughout the time period) is given by

Π(c,µ|p,T ) = (p− c)λ(p,µ)−R(c,µ) +T, (4)

where c is the cost of providing service per customer and µ represents the level of effort that the

service provider chooses to exert in order to reduce waiting time. The cost function, R(c,µ), denotes

the cost of all activities undertaken by the service provider to reduce the cost of providing service

to the level, c, and the cost of effort, µ, associated with reducing the waiting time. We assume that

cost, R(c,µ), is a fixed cost, at least in the short-run, and is decreasing in cost per customer, c,

increasing in effort, µ, and it is jointly convex.

In the case of the ED, the single period of time may represent a year within which the regulator

has committed not to make any further adjustments to the regulatory environment. The cost per

customer, c, represents the overall cost of treating a patient with a specific condition, and R(c,µ)

denotes the cost (per unit time) of any interventions or process re-engineering that may yield a

more cost-efficient process or increase in throughput. For instance, purchasing capital intensive new

equipment that allows for more precise and faster patient treatment, employing more and better-

qualified staff, and/or re-engineering processes (e.g., having patients triaged and diagnosed by more
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experienced healthcare providers (Saghafian et al. 2014), can reduce the cost of treating patients

and simultaneously increase the throughput (see Saghafian et al. (2015) for more on throughput

improvements in EDs.) We extend this model to more general cost structures in the EC. If the

service is provided in an M/M/1 queue, the variable µ can be interpreted as the service rate

(or service capacity) of the system and, for this reason, we will refer to µ as effort or capacity

interchangeably.

At the beginning of the period, the provider chooses the optimal cost, c, and waiting time

reduction effort, µ, by solving the profit maximization problem

max
0<c≤co,0<µo≤µ

Π(c,µ|p,T ). (5)

We assume that the service provider must choose the cost per patient, c, from the interval [0, co]

and the capacity level, µ, from the interval [µo,∞). The objective of profit maximization is not

inconsistent with hospital care, see for example the discussion in Andritsos and Aflaki (2015). Natu-

rally, to solve the problem specified above, the provider must know the cost function, R(c,µ), and

be able to estimate the patient demand, λ(p,µ) (which requires knowing the queueing dynamics,

the distribution of customers’ valuation, and the size of catchment area). The limits, co, which can

be arbitrarily large, and µo, which can be arbitrarily small, can be thought of as the (exogenous)

default cost and capacity decisions of the provider.

Finally, we note that our model includes N non-competing providers who we assume are iden-

tical in terms of their profit functions. We extend our analysis to heterogeneous providers and to

providers who compete on waiting times in the EC.

3.3. Regulator’s Welfare

The regulator has the authority to dictate the price, p, paid by customers, the transfer, T , received

by the providers, and may also choose to dictate the cost, c, and capacity, µ, set by the service

providers. These are chosen at the beginning of the time horizon in order to maximize total wel-

fare, which comprises the accumulated customer surplus and the profits of each of the N service

providers. The expression for the total welfare rate associated with one such service provider is

given by

S(p, c,µ) = Λ

∫ ∞
p+tW (λ,µ)

(x− p− tW (λ,µ))dΘ(x) + (p− c)λ(p,µ)−R(c,µ), (6)

where λ(p,µ) is given in (2). The first term in the expression above is the total consumer surplus

per unit of time. The second and third terms together constitute the profit of the service provider,

net of the transfer payment. We note that the transfer payment, T , does not appear in the welfare

function as it is a payment within the system. Nevertheless, the transfer payment may be necessary
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to ensure that the service provider breaks even, that is, Π(c,µ|p,T ) ≥ 0, and would therefore

continue to provide service. Under the M/M/1 assumption, the social welfare rate can be written

as

S(p, c,µ) = Λ

∫ ∞
p+ t

µ−λ(p,µ)

(
x− p− t

µ−λ(p,µ)

)
dΘ(x) + (p− c)λ(p,µ)−R(c,µ), (7)

where λ(p,µ) is given by (3).

In the ED setting, we assume that the role of the regulator is fulfilled by the main payer (e.g., CMS

in the US or the national payer in other more centralized systems) whose objective is to maximize

the sum of patient utility and hospital profits. Similar objectives have been used extensively in

healthcare economics and operations management literature, e.g., Andritsos and Tang (2015),

Adida et al. (2016).

3.4. First-best Benchmark

We start the analysis by finding the welfare maximizing price, p, transfer payment, T , cost per

customer, c, and capacity, µ, assuming that the regulator has full information about all model

parameters, including the cost function, R(c,µ), of the service provider and the equilibrium arrival

rate, λ(p,µ), of the customers. In this centralized setting the regulator solves

max
p≥0,co≥c>0,µ≥µo>0,T

S(p, c,µ) (8)

s.t. Π(c,µ|p,T )≥ 0. (9)

We highlight that, given any level of price, p, cost per customer, c, and capacity, µ, any transfer

payment, T , above a threshold would satisfy the provider’s break-even constraint in (9). Here, we

implicitly assume that the regulator prefers reimbursing the provider as little as possible while

ensuring that (9) holds (see also Sobel (1999)). We also note that, due to the complicated (and

endogenous) queueing dynamics, the welfare function might not always be concave. As usual in

the literature of queueing games, we assume that first-order conditions (FOCs) are necessary and

sufficient for determining the unique solution to the regulator’s welfare maximization problem. We

present sufficient conditions for this to be the case in the EC.

Proposition 1. The unique welfare-maximizing (first-best) price, p∗, cost per customer, c∗,

capacity, µ∗, and transfer payment, T ∗, are given by

∂

∂c
R(c∗, µ∗) =−λ∗, (10)

∂

∂µ
R(c∗, µ∗) =−tλ∗ ∂

∂µ
W (λ∗, µ∗), (11)

p∗ = c∗+ tλ∗
∂

∂λ
W (λ∗, µ∗), (12)
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T ∗ =R(c∗, µ∗)− tλ∗2 ∂
∂λ
W (λ∗, µ∗), (13)

where λ∗ = λ(p∗, µ∗) is given by (2). In the M/M/1 case, −tλ∗ ∂
∂µ
W (λ∗, µ∗) = tλ∗ ∂

∂λ
W (λ∗, µ∗) =

tλ
(µ−λ)2 .

Proof of all results presented in the Appendix.

The solution to the regulator’s problem makes intuitive sense. First, the transfer payment of

(13) is such that the service provider breaks even. Second, the first-best service cost, c∗, given by

(10) is set so that the marginal benefit from a reduction in the treatment cost across all customers

seeking service, λ∆c, is equal to the marginal cost of cost reduction, ∂R
∂c

∆c. Third, the first-best

service capacity, µ∗, given by (11), is set so that the marginal cost of increasing capacity, ∂R
∂µ

∆µ,

is equal to the reduction in waiting time associated with the increase in capacity experienced by

all customers who choose to seek service, −tλ∂W
∂µ

∆µ. Fourth, the first-best price, p∗, given by (12),

makes the customers who choose to seek service bear the cost of providing the service, c, plus an

additional “toll” which is equal to the marginal externality cost incurred by their fellow customers

due to the increase in waiting time, tλ∂W
∂λ

.

We note that, if the cost of waiting is zero (t = 0), our results coincide with those of earlier

models where waiting is assumed not to be costly, for example, Shleifer (1985). (In this case one can

ignore condition (11) as capacity has no impact on welfare.) Comparing the setting with positive

waiting costs to a setting where waiting costs are zero, we note one important difference: in the

former, customers are charged more than the cost of providing service, that is, p > c. This result

is similar to Naor (1969). The additional charge reflects the endogenous nature of waiting costs;

that is, by joining the service provider, consumers make it more expensive for anyone else to join.

They, therefore, have to be charged an additional “toll” to incentivize optimal joining behavior.

As a consequence of this toll, the break-even transfer payment required is less than the investment

cost, R(c∗, µ∗). Throughout this paper, we focus on the more interesting case where µ∗ > µo and

c∗ < co.

4. Regulatory Schemes

To implement the welfare maximizing capacity, µ∗, cost per customer, c∗, and price, p∗, the regulator

needs to have perfect knowledge of the cost function R(c,µ), and the customer equilibrium arrival

rate λ(p,µ). In practice, regulated firms often have privileged information vis-à-vis the regulator

(Armstrong and Porter 2007). In the hospital setting specifically, the number of conditions treated

and the pace of technological change associated with treatments would make it difficult for the

regulator to maintain an accurate understanding of the costs. Similarly, the regulator may be

less able to estimate the distribution of customers’ benefit from service Θ(.), a critical input into
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the calculation of the equilibrium arrival rate λ(p,µ), vis-à-vis the service provider who regularly

interacts with the customers.

In contrast, the regulator may be able to observe audited accounting data on the cost of treat-

ment, c, investment cost, R, and the average number of customers served per unit time, λ, along

with the average waiting time, W , after the service provider chooses the capacity and marginal cost

levels. For example, CMS already collects and audits the first three figures for all hospitals in the

US and has recently started collecting the last. Similarly, in addition to costs, ED waiting times are

also monitored by the UK hospital regulator. Motivated by this observation, we will present four

regulatory regimes that do not assume knowledge of the cost function, R(c,µ), or the customer

equilibrium arrival rate function, λ(p,µ). The first two, cost-of-service regulation and cost-based

yardstick competition, have been implemented in practice, but their performance in a service set-

ting, where waiting times are costly, has not been assessed before. The third and fourth regulatory

regimes, which modify cost-based yardstick competition, are, to the best of our knowledge, new.

For each of the regulatory schemes that we introduce, we need to make specific assumptions about

the providers’ profit function to ensure sufficiency of FOCs. As in the previous section, we present

these sufficient conditions in the EC.

4.1. Cost-of-service Regulation

Under cost-of-service regulation, the service provider is free to decide on the capacity, µ, cost per

customer, c. The reimbursement (in the form of price, p, and transfer payment, T ), chosen by

the regulator, is designed to cover the total cost of the service provider while avoiding distortions

associated with the monopolist price that the service provider would naturally be inclined to

impose. More specifically, under this scheme, which is similar to the way that hospitals were

reimbursed by CMS until 1983 (Mayes 2007), the regulator would audit the service provider to

determine the costs c and R(c,µ) and would then impose a customer price p = c and transfer

payment T =R(c,µ). Clearly, this scheme cannot induce socially optimal investment because the

service provider makes zero profit regardless of the capacity and cost-reduction effort that it makes

and, therefore, has no incentives to invest in either. This result is also noted in Shleifer (1985).

4.2. Cost-based Yardstick Competition

The reason why “cost-of-service” regulation fails to provide cost-reduction incentives is the depen-

dence of the firm’s reimbursement on its own chosen cost structure. An alternative regulatory

scheme, which eliminates this dependence, has been proposed by Shleifer (1985). In his setting,

customers do not experience costly waiting times, and the proposed regulatory regime achieves

socially optimal levels of cost-reduction effort without relying on the regulator knowing the cost

function of the firm, R(c,µ). Since this scheme is similar to the DRG payment system implemented
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by CMS in hospital reimbursement, it is important to investigate if it can achieve socially desired

outcomes in the case where consumers’ delays are costly. Before we discuss this, we first explain

the scheme proposed by Shleifer (1985). To do so requires defining some additional notation.

We follow the same notation as before but add a subscript i, which stands for the service provider

index, i= 1, ...,N . For each service provider i, i= 1, ...,N , define

c̄i =
1

N − 1

∑
j 6=i

cj, R̄i =
1

N − 1

∑
j 6=i

R(cj, µj). (14)

Under the scheme proposed by Shleifer (1985), the regulator sets customer price and transfer

payment for provider i to be pi = c̄i, and Ti = R̄i, respectively. Based on the price, pi, and the

capacity choice of service provider i, which determines its expected wait time, customers seek

service at provider i with the rate given in (2). Since the price and transfer payment of each provider

depend on the actions of all other providers, they are forced to engage in a simultaneous-move game

with complete information, where each provider chooses the capacity, µi, and cost per customer,

ci, to maximize the payoff function given in (4). We present the equilibrium of this game below.

Proposition 2 (Shleifer 1985). In the absence of costly waiting time (t= 0), if the regulator

sets provider’s i’s price and transfer payments by (14), the unique Nash equilibrium is for each

provider i to choose ci = c∗, i= 1, ...,N , N ≥ 2. Also, all providers make zero profit in equilibrium.

By implementing the regulatory scheme described above, the regulator forces the providers to

engage in indirect competition to reduce costs. This is achieved by first, decoupling the reim-

bursement rate of each provider from the cost chosen by the provider, and second, setting the

reimbursement rate equal to an exogenous industry-wide benchmark cost level. In the absence

of costly waiting time (t = 0), the unique symmetric Nash equilibrium of this tournament-style

competition generates first-best outcomes, that is, it achieves the same cost-reduction investment

as that chosen by the regulator under full information derived in §3.4. However, this scheme can

be implemented using cost-accounting data, and therefore, does not require symmetric informa-

tion between the regulator and the regulated service providers. Furthermore, under this scheme

all service providers achieve zero profits in equilibrium and, as a result, there is no reason for the

regulator to want to renegotiate any payments after investments have been made, thus alleviating

any concerns for hold-up problems (Sobel 1999).

Since this scheme depends only on the cost of providing the service (and not the level of capacity

investment), we refer to this scheme as cost-based yardstick competition. We next investigate the

performance of this scheme in the setting where customers are sensitive to delays.
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Proposition 3. If customers experience costly waiting time (t > 0) under the cost-based yard-

stick competition of Proposition 2, the providers’ installed capacity is the minimum capacity level

µo < µ∗ in all potential symmetric equilibria. If, in addition, ∂2R(c,µ)

∂µ∂c
≥ 0 for all 0 < c ≤ co and

µ≥ µo, then this reimbursement scheme results in a unique symmetric equilibrium where providers

choose a higher cost compared to the first-best, c∗.

This proposition shows that, in the presence of costly waiting time, cost-based yardstick compe-

tition results in underinvestment in capacity. This result, which holds irrespective of the detailed

queueing discipline employed by the service provider, arises because, in equilibrium, the service

provider has no incentive to increase capacity. Adding capacity investment is costly; however, the

service provider does not receive any direct benefit from the associated reduction in waiting times

(her payment is not linked to capacity or waiting time) or indirect benefit (although the reduction

in waiting time will increase the equilibrium arrival rate, this will not increase the service provider’s

profit, as the marginal profit for each additional customer is, in equilibrium, zero). Furthermore,

this scheme suffers from an additional source of inefficiency – given the capacity and marginal

cost-reduction investment, more customers choose to seek service than is socially optimal (for that

price and capacity level) in a similar spirit to Naor (1969). This can be seen by noting that the

first-best price (see Proposition 1) is greater than the marginal cost (see Proposition 3). In addition

to underinvestment in capacity, Proposition 3 shows that, if marginal cost reduction gets cheaper

for providers with higher capacities (i.e., ∂2R(c,µ)

∂µ∂c
≥ 0), cost-based yardstick competition leads to

underinvestment in cost reduction as well (i.e., the cost per customer is greater than first best).

Clearly, cost-based yardstick competition falls short of achieving socially desired outcomes in a

setting with capacity-constrained providers and delay-sensitive customers. The systematic under-

investment in capacity that arises as an equilibrium result from this scheme may be a contributing

factor in the long waiting times observed in accessing emergency healthcare throughout the deve-

loped world (GAO 2009). For the rest of this paper, we investigate whether this shortcoming of

cost-based yardstick competition can be improved by implementing alternative regulatory schemes.

4.3. Cost- and Capacity-based Yardstick Competition: First-best

We next propose a regulatory scheme that incentivizes service providers to take the first-best

actions established in Proposition 1 when waiting time is costly, that is, t > 0. Let λi and µi

respectively denote the arrival rate and capacity of service provider i and define

λ̄i =
1

N − 1

∑
j 6=i

λj and µ̄i =
1

N − 1

∑
j 6=i

µj, (15)

for i= 1, ...,N . Consider the following payment scheme: each customer seeking service from provider

i is charged a price pi, where

pi = ci + tλi
∂

∂λ
W (λi, µi). (16)
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In addition, the regulator sets the transfer payment Ti to provider i as

Ti = (c̄i− ci)λ̄i + tλ̄i
∂

∂µ
W (λ̄i, µ̄i)(µ̄i−µi) + R̄i− tλ2

i

∂

∂λ
W (λi, µi). (17)

Under this payment scheme, service provider i’s objective function can be written as

Π(ci, µi|pi, Ti) = (c̄i− ci)λ̄i + tλ̄i
∂

∂µ
W (λ̄i, µ̄i)(µ̄i−µi)−R(ci, µi) + R̄i. (18)

As in the case of cost-based yardstick competition, this payment scheme induces a simultaneous-

move game between the providers. We investigate the equilibrium outcome of this game with the

theorem below.

Theorem 1. If the regulator sets service provider i’s price equal to pi given in (16) and transfer

payment equal to Ti given in (17), then the unique symmetric Nash equilibrium is for each provider

i to pick ci = c∗ and µi = µ∗, for i= 1, ...,N. Also, all providers make zero profit in equilibrium.

The regulatory scheme proposed in this section consists of a per-customer price, pi, and a trans-

fer payment, Ti, similar to cost-based yardstick competition. In addition to costs, each now also

depends on the capacity decision, µi, directly. The price, pi, which is equal to the cost of providing

the service, ci, plus the expected waiting-cost externality (tλi
∂
∂λ
W (λi, µi)), serves the purpose of

regulating the customers’ joining behavior and, in equilibrium, is equal to the first-best price, p∗.

Without it, customers would over-join compared to the socially optimal arrival levels as explained

in §3.4. The transfer payment, Ti, coupled with the fee paid by each customer, serves to align the

providers’ incentives with the regulators’ and, at the same time, ensures that the providers break

even. The first term of the transfer payment ((c̄i − ci)λ̄i), which is decreasing in the difference

between the costs of provider i and the industry average, puts pressure on each provider to reduce

costs to first-best levels. The second term (tλ̄i
∂
∂µ
W (λ̄i, µ̄i)(µ̄i−µi)), which is increasing in the dif-

ference between the service rate of provider i and the rest of industry that serves as a benchmark

(µi− µ̄i), provides the right incentives for each provider to increase capacity to first-best levels. The

final two terms serve to ensure that the providers break even in equilibrium, thus alleviating any

concerns that the contracts may be renegotiated. Furthermore, in equilibrium, all but the last two

terms in the transfer payment would simplify to zero; thus, the actual equilibrium payment would

simplify to R̄i− tλ2
i
∂
∂λ
W (λi, µi), or, in the case of M/M/1 queueing discipline to R̄i− tλ2

i
(µi−λi)2

.

We note that the scheme proposed in this section achieves first-best without requiring the regu-

lator to have symmetric information about either the cost function, R(c,µ), or the customer equili-

brium arrival rate function, λ(p,µ). Nevertheless, we think that it would be difficult to implement

in practice, especially in the case of hospital ED regulation. First, the mechanism proposed above

requires customers to be charged a provider- and condition-specific fee to achieve socially optimal
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arrivals. This might be possible in certain industries; however, in most healthcare delivery systems,

patients do not bear the cost of treatment directly. For example, in the UK healthcare is funded

through taxes and is free of charge to all residents. Although in other healthcare systems, such

as the US, patients may be required to pay a fee when they receive treatment (e.g., in the form

of co-payments), this fee is not tied to the performance of the provider and does not depend on

the patient’s condition. Second, in order for the regulator to implement the yardstick competition

mechanism proposed in this section, it is necessary to have some information about the queueing

discipline at the providers’ sides. This is needed in order to estimate the service capacity, µ, instal-

led by each provider and the waiting time function and its derivatives with respect to the arrival

rate, λ, and capacity, µ. We suspect that in the highly complex hospital ED setting the queueing

discipline would be hard to observe for the regulator. Motivated by the first practical difficulty

above, in the next section we provide an alternative scheme which does not charge the customers a

provider- and condition-specific fee. Fortunately, as we show in the next section, this scheme also

alleviates the second concern as well.

We conclude this section by noting that we cannot rule out the existence of asymmetric equilibria.

This is a common problem in such settings, see for example, Shleifer (1985). Nevertheless, in § EC.4

we present a more complex regulatory scheme for which we can also rule out the existence of any

asymmetric equilibria.

4.4. Free-at-the-point-of-care Yardstick Competition: Second-best

To address the concern that it is often not feasible to charge customers directly, in this section,

we propose an alternative payment scheme that guarantees that the chosen actions of the service

providers will maximize welfare. For the rest of this section, we assume that the regulator charges

a fixed price, which we fix to p= 0 and drop from the notation, for example, we set λ(µ) = λ(0, µ),

with a slight abuse of notation. The analysis of this section would be almost identical if customers

were charged a fixed fee, as in the case of patient co-payments for visiting EDs.

First, consider the objective function of the regulator S(c,µ) defined as in (6) with p= 0. The

optimal solution to this problem which we label as “second-best” solution and denote with µ∗o and

c∗o, is given by the following proposition.

Proposition 4. The unique welfare-maximizing (second-best) capacity µ∗o, cost per customer

c∗o, and transfer payment T ∗o , when price p= 0 are given by

∂

∂c
R(c∗o, µ

∗
o) =−λ(µ∗o), (19)

∂

∂µ
R(c∗o, µ

∗
o) =−tλ(µ∗o)

d

dµ
W (λ(µ∗o), µ

∗
o)− cλ′(µ∗o), (20)

T ∗o =R(c∗o, µ
∗
o). (21)

In the M/M/1 case, d
dµ
W (λ(µ), µ) = λ′(µ)−1

(µ−λ(µ))2 .
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We note that, in the absence of a provider-specific fee (e.g., p= 0), consumer behavior is going

to be inefficient – some customers with a sufficiently low valuation who would have chosen not to

visit the provider under first-best price, p∗, will now find it optimal to seek service. In fact, when

p= 0, the only reason that not everyone seeks service is congestion – some potential customers find

the cost of the (equilibrium) expected waiting time to outweigh the benefit from receiving service.

For each service provider i, we define the average waiting time of all other service providers as

W̄i =
1

N − 1

∑
j 6=i

W (λ(µj), µj), i= 1, . . . ,N. (22)

For notational simplicity, we set Wi := W (λ(µi), µi). Consider the payment scheme where the

regulator pays provider i a transfer payment equal to

Ti = t(W̄i−Wi)λ̄i + R̄i + c̄iλ̄i. (23)

Under this payment scheme, service provider i’s objective function is given by

Π(ci, µi|Ti) =−cλ(µi) + t(W̄i−Wi)λ̄i−R(ci, µi) + R̄i + c̄iλ̄i. (24)

The payment scheme defined above forces the service providers to engage in a simultaneous-move

game whose equilibrium outcome we present below.

Theorem 2. If the regulator makes transfer payment Ti defined as in (23) to provider i, for

i= 1, . . . ,N and customers are not charged directly, the unique symmetric Nash equilibrium is for

each provider i to pick µi = µ∗o and ci = c∗o for i= 1, . . . ,N . Also, all providers make zero profit in

equilibrium.

The implication of Theorem 2 is that, in the absence of a direct customer fee, yardstick compe-

tition is still useful. Although it cannot restore first-best outcomes (as there is no way to counter

the inefficient joining behavior of customers), by implementing the scheme proposed above, the

regulator can achieve the second-best outcome, even though he has no information about the cost

structure of the service providers, R(c,µ), or the customer equilibrium arrival rate function, λ(p,µ).

The incentive to invest optimally (in the second-best sense) in capacity, µ, comes from the transfer

payment, which is an increasing function in the difference between the industry benchmark waiting

time, W̄i, and that chosen by the provider, Wi. This creates the tournament-style incentives that

lead to a unique symmetric equilibrium where all providers invest optimally in capacity. Similarly,

each provider has an incentive to invest optimally in cost reduction (again, in a second-best sense)

as the payment scheme described above, which pays the provider a fee that is independent of their

own actions, makes the provider the residual claimant – the additional value generated by lower

costs is fully appropriated by the provider.
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Furthermore, the scheme proposed in this section is simpler than that proposed in §4.3, where

customers are charged a direct fee, for three reasons. First, it requires no information on the service

rate, µ, or the queueing discipline and the associated waiting time function, W (λ,µ), and its

derivatives. Instead, the only additional requirement compared to the simpler cost-based yardstick

competition of §4.2 is that the regulator also monitors the average wait time for each provider.

Second, the equilibrium transfer payment is equal to the total cost incurred by the service provider

(Ri + ciλi), which, in contrast to the transfer payment of the first-best scheme of §4.3, is always

non-negative. Third, it does not require that the regulator is able to separately observe the cost

of providing service, c, and the investment costs, R. Instead, it suffices to observe the total cost

incurred by each provider Ri + ciλi (see also Meran and Von Hirschhausen (2009)), which is a

simpler task in many cases where variable and fixed costs are not easy to delineate (such as hospital

care, see for example, Freeman et al. (2016)). For these reasons, we expect this scheme to be easier

to implement in practice than the first-best scheme of §4.3.

However, we note that, despite its simplicity, this scheme requires that the regulator knows the

patients’ cost of waiting, t, which may not always be the case. We investigate this dependence

numerically in §5. Furthermore, the simplicity of the second-best yardstick competition comes at

a cost of efficiency. The loss of efficiency, which we also investigate numerically in §5, is due to

the suboptimal customer joining behavior, which this regulatory scheme does nothing to curtail.

In that sense, this regulatory scheme treats waiting times as any other exogenous quality measure

that the regulator might care about (e.g., hospital readmission rates (see Zhang et al. (2016)) or

adherence to best-practice protocols (see Gaynor (2004) for a literature review and background)

and augments the standard yardstick competition of §4.2 in order to provide sufficient incentives

to invest optimally in improving this quality measure. Therefore, and perhaps not surprisingly,

the scheme proposed in this section has some similarities to a scheme already in use by CMS to

provide quality improvement incentives in dimensions other than costs (e.g., Hospital Value-Based

Purchasing program (CMS 2016a) or the Hospital Readmission Reduction Program (Zhang et al.

2016)).

We conclude this section by noting that Theorem 2 does not rule out the existence of asymmetric

equilibria. Nevertheless, we are able to show in the §EC.5 that, when there are only two providers

(i.e., N = 2), the symmetric equilibrium is indeed unique. Using this observation, we can then

propose an alternative mechanism that does result in a unique equilibrium which leads to second-

best outcomes. In this mechanism, providers are divided into two disjoint sets, and the average

performance of one set is used to set a yardstick for the other and vice versa.
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5. Numerical Investigation

In §4, we have argued that the second-best yardstick competition would be easier to implement

in healthcare settings such as the regulation of EDs, as: a) customers are typically not charged

a provider-specific fee for accessing care; and b) it places a lower informational burden on the

provider. These advantages come at the cost of not achieving first-best level of investment in either

wait-time or cost reduction. In this section, we numerically investigate the efficiency loss associated

with this second-best outcome. In addition, we also investigate the equilibrium cost of second-best

regulation and the impact of error in the estimation of one critical model parameter, the cost of

waiting, t.

5.1. Model Parameters

The queueing model presented in this section is clearly a stylized representation of reality. Nevert-

heless, we have chosen a range of parameter values that match, as far as possible, the ED setting.

• We set the cost of waiting, t, to $30 per hour which is approximately the 75th percentile of US

hourly wages (Bureau of Labor Statistics 2016). We vary this from $10 to $100 per hour, a range

which contains more than 80% of the population’s hourly wages.

• We assume that the distribution of patients’ benefit from treatment follows the exponential

distribution Θ(x) = 1− e−αx, where x is benefit from service (in dollars) and α > 0. This implies

that the price elasticity of demand is −αx. To estimate the elasticity parameter α we use the fact

that (i) at the average cost, US healthcare price elasticity is estimated to be -0.17 (Ringel et al.

2002); and (ii) the average cost is approximately equal to $200 – this is the sum of the average

co-payment for an ED visit, estimated to be $140 (CEB 2016), and the average cost of waiting

(which is given by multiplying the average ED waiting time of two hours, as reported in Batt and

Terwiesch (2015), with the cost of waiting of $30 per hour). This generates a base estimate of

α= 8.5× 10−4$−1. We run a sensitivity analysis for α ranging from 5× 10−4$−1 to 20× 10−4$−1,

which corresponds to price elasticity ranging from -0.10 to -0.40.

• To estimate the size of the total potential demand Λ (i.e., the demand if waiting times and

price were both zero), we start from the observation that, at current waiting times, average realized

ED demand in the US in 2011 was 44.5 visits per 100 persons per year (CMS 2011). We also

assume that these visits happen at a constant rate through the year and time of day, and that the

EDs’ catchment area is 200,000 people (Williams et al. 2004). This gives a base estimate for the

actual demand, λ=10.2 patients per hour. At current average cost of $200, the demand is given

by λ= Λe−200×8.5×10
−4

, which gives an estimate of Λ = 12.1 patients per hour. In our experiments,

we vary the catchment area size between 90,000 and 300,000 people, which generates arrival rates

that correspond to those of ∼90% trauma hospital EDs in California (OSHPD 2016, ACS 2017).
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• The marginal cost of treating a patient at the ED is estimated to be co =$337 in Grannemann

et al. (1986) and $156 in Williams (1996) (both figures inflated to 2016 dollars). We set co =$268

based on these cost figures that is slightly higher than the average $246.

• To estimate the default ED capacity, µo, we once again make use of the observation that

the average ED waiting time is two hours. If we assume that the queueing discipline can be

approximated by an M/M/1 queue then, given the arrival rate of 10.2 patients per hour (see above),

we can estimate the average service rate (approximately) µo = 10.7 patients per hour. Since we are

interested in equilibrium outcomes, in all numerical examples, we report the resulting equilibrium

capacity, µ, even if it is less than µo.

• We use the following function for the cost of capacity and cost reduction R(c,µ) = eβµ+γ(co−

c)2, with γ > 0 and β > 0. The structure of the first part of the cost function is similar to that used

in Grannemann et al. (1986) to estimate the average cost per hospital patient. Since the cost of

capacity is largely due to personnel cost, we start from the estimated personnel cost per patient

treated at the hospital, which is reported to be to $110 (Williams (1996), inflated to 2016 prices).

At µo = 10.7 and λ = 10.2, we can estimate β by solving e10.7β = 10.2 × 110. This produces an

estimate of 0.64. In our experiments, we consider the range of β values between 0.44 and 0.84,

which corresponds to a cost of capacity per patient of between $10 and $784, respectively. Finally,

we set γ = 0.054, which makes the cost of capacity equal to the investment for cost reduction, if all

parameters are set to base case. Because the investment in cost reduction is not the focus of this

work, we do not perform a detailed sensitivity analysis of the cost-related parameters γ and co.

The parameter values chosen, as well as the range within which they are varied (if applicable),

are displayed in Table 1. We confirm that for the chosen parameter values, total welfare and the

providers’ profit functions are concave and the optimal solutions are interior (unless otherwise

stated). To maintain connection with reality, we assume that, under second-best regulation, the

regulator imposes the $140 fixed co-payment (see above). This amount is always lower than the

optimal first-best price, and our results remain qualitatively similar if the co-payment is reduced

to zero.

5.2. Comparison of First-best vs. Second-best Welfare

The loss of welfare associated with implementing second-best yardstick competition, where patients

are charged a constant fee, compared to first-best, where patients are charged the welfare-

maximizing fee, is presented in Figure 1. A value of 1 indicates that there is no welfare loss. For

the parameters tested, we observe that the capacity cost coefficient, β, the size of catchment area,

Λ, and the demand elasticity coefficient, α, have the most significant impact on welfare ratio. More

specifically, as β, Λ or α increase, the welfare ratio reduces to as low as 68%. The change in cost
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Parameter Description Parameter Base Estimate Range

Size of catchment area Λ 12.1 patient/hr [5.4,18.1]
Demand elasticity coefficient α 9.5× 10−4$−1 [5,20]× 10−4

Cost of waiting t $30/hr [10,100]
Capacity cost coefficient β 0.64 [0.44,0.84]

Cost-reduction coefficient γ 0.054 N/A
Default cost per patient co $268/patient N/A

Table 1 Parameter estimates for numerical analysis. The investment cost function is assumed to be

R(c,µ) = eβµ + γ(co− c)2 and the cumulative distribution function of the patients’ benefit from receiving

treatment is Θ(x) = 1− e−αx.

0.
6

0.
7

0.
8

0.
9

1

0.44 0.54 0.64 0.74 0.84

β

W
el

fa
re

 R
at

io

(a) Welfare ratio vs. β.

5.4 9.1 12.1 15.1 18.1

0.
6

0.
7

0.
8

0.
9

1

Λ

W
el

fa
re

 R
at

io

(b) Welfare ratio vs. Λ (in patients/hr).

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1

α (10−4)

W
el

fa
re

 R
at

io

(c) Welfare ratio vs. α.

10 40 70 100

0.
8

0.
85

0.
9

0.
95

1

t

W
el

fa
re

 R
at

io

(d) Welfare ratio vs. t (in $/hr).

Figure 1 Ratio of second-best to first-best welfare vs. β, Λ, α, and t.

of wait per unit time, t, however, impacts welfare ratio to a much lesser extent. Hence, in situati-

ons with relatively large capacity cost, and/or large catchment areas, and/or elastic demand, the

additional effort to determine the appropriate fee may be warranted.

We next investigate what drives the impact of each of the four parameters, β, Λ, α, and t, on

the welfare ratio described above. We start with the capacity cost coefficient β. As β increases,

capacity becomes more costly, therefore providers choose to operate at higher utilization levels

(defined as the effective arrival rate divided by the capacity) under both first- and second-best

regulation, resulting in average waiting times that are increasing in β – see Figure 2(a). We note

that waiting times increase more for second-best as opposed to first-best regulation. This is due to

the fact that customers over-join under second-best regulation, coupled with the fact that expected

waiting times become more sensitive to increases in arrival rate in an M/M/1 queue as it becomes
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Figure 2 Expected waiting time (in hours) under first-best and second-best regulation vs. β, Λ, α, and t.

more congested. Hence, as β gets larger, the welfare loss associated with second-best regulation

increases. We observe a similar phenomenon as Λ increases, see Figure 2(b).

As the demand sensitivity parameter α decreases, demand becomes less price/wait-time sensitive

and so more patients are willing to visit the ED for any given price/wait time. Under first-best

regulation, as α decreases, the regulator can react to the associated increase in demand using two

levers: i) increase capacity in order to serve the increased demand faster; ii) increase the price to

curtail the increase in arrivals. In our numerical analysis, we find that the regulator will increase

both capacity and price as α decreases. Nevertheless, the increase in capacity under first-best

regulation is not enough to reduce waiting times which will increase as α decreases, see Figure 2(c).

In contrast, under second-best regulation, as demand becomes less price-sensitive (i.e., α decreases),

the regulator only has the first lever available; he can increase capacity but cannot charge a higher

price. Furthermore, increasing capacity is more effective in increasing social welfare as arrivals

increase, that is, when α is lower. As a result, we observe that, as α decreases under second-

best regulation, waiting times also increase, but the gap between the waiting times under first-

and second-best regulation remains roughly constant, see Figure 2(c). Naturally, since the gap in

waiting times remains constant as α increases while the total welfare decreases as demand becomes

more price-sensitive (i.e., α increases), the welfare loss associated with second-best compared to

first-best regulation also increases in α, as observed in Figure 1.

We next examine the impact of the cost of waiting t on the welfare ratio. We note that it has
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a less pronounced impact on the welfare ratio than the other parameters, β, Λ, or α, as shown

in Figure 1. To see why this is the case, note that if t is high, then under either first- or second-

best regulation, the system operates at relatively low utilization, resulting in relatively low waiting

times, see Figure 2(d). Hence, the over-joining behavior observed under second-best regulation does

not affect social welfare as much. If, on the other hand, t is low, under either type of regulation,

the system will operate under high utilization, resulting in long waiting times, see Figure 2(d).

However, since the waiting time cost t is low, customers are less sensitive to delays and therefore

social welfare is, again, not greatly affected by the inefficient over-joining behavior under second-

best regulation.

5.3. Impact of Misestimating the Cost of Waiting

To implement the proposed payment schemes, the regulator needs to estimate the cost of waiting, t.

We next investigate the impact of misestimation of t on welfare using the following procedure. We

assume that t= $30 and that the regulator erroneously sets this cost equal to to( 6= t) in (16)-(17)

for first-best and in (23) for second-best regulation. We identify the equilibrium for each to ranging

from $0.1 to $60 in increments of $0.1 by solving the FOCs of the provider’s objective and verifying

that the objective is maximized with these actions. We then compare the welfare in this equilibrium

to the base case, that is, when the regulator estimates t correctly. We present the welfare ratio as a

function of to in Figures 3(a) and (b) for first- and second-best regulation, respectively. Similarly,

Figures 4(a) and (b) present the resulting equlibrium waiting times, regulator reimbursement,

and patient price (or co-payment). Under second-best regulation, the providers exert no effort in

capacity expansion in equilibrium for to ≤ $6.09, hence we plot the welfare ratio beyond this point

only.
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(b) Second-best regulation.

Figure 3 Ratio of realized to first-best (second-best) welfare vs. misestimated cost of waiting to. Actual cost of

waiting is = $30. Other parameters set to base case.

It is clear from Figure 3 that estimation error in the cost of waiting, t, generates a loss of

welfare. When t is underestimated, providers operate under high utilization simply because they

lack sufficient incentives to cut the high wait times that can be seen in Figure 4. When t is
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Figure 4 Expected waiting time, price or co-payment, and reimbursement per patient vs. misestimated cost of

waiting to. Actual cost of waiting is t= $30. Other parameters set to base case.

overestimated, the providers invest more in costly capacity, which is underutilized leading to short

waiting times. Nevertheless, there are two interesting observations. First, the welfare loss under

first-best regulation is less sensitive to estimation errors than under second-best. Second, the impact

of the estimation error is more substantial when t is underestimated (it reaches 80% and 54% in

first- and second-best, respectively) compared to when it is overestimated (it is above 99.5% and

97.7% in first- and second-best, respectively, when to ≥ t).6 We believe that this has to do with the

fact that waiting times are convex in capacity – starting from the optimal capacity (set when t is

estimated accurately), a small decrease in capacity (due to t being underestimated), will generate

a greater loss of welfare due to a larger increase in waiting times than the welfare gain associated

with the small reduction in waiting times generated by a small increase in capacity (due to t being

overestimated). Hence, the welfare loss is more substantial when t is underestimated than when it

is overestimated.

The fact that total welfare is not very sensitive to the actual cost of waiting assumed by the

regulator points to the fact that welfare is relatively flat around the actual cost, t. An overestimate

of t will generate a welfare loss due to installing more capacity than optimal. This will be almost

fully compensated by an increase in welfare due to the associated reduction in waiting times and

increase in demand. In light of this discussion, the regulator may be able to use the waiting-time

cost parameter, t, as a lever to influence waiting times; by choosing to implement a regulatory

scheme with high t, the regulator shifts the equilibrium outcome towards lower waiting times, at

the expense of higher hospital costs, without sacrificing much in terms of welfare. We quantify

6 We verify the robustness of this observation by generating 1,000 random scenarios for Λ, α, and β using the ranges
specified in Table 1. In all scenarios, we set t= $30. As in the case above, we find the welfare loss under first- and
second-best regulation if the regulator first underestimates t to to = $20 and second, overestimates t to t0 = $40. In
all the parameter combinations, the welfare loss for first-best regulation was minimal; the average welfare loss was
equal to 0.10%, with maximum loss equal to 0.21% for to = $20, and it was equal to 0.05% with maximum loss equal
to 0.11%, for t0 = $40. In the second-best for to = $20, the average welfare loss was equal to 1.80% with maximum
loss equal to 6.78%, and for to = $40, the average welfare loss was 0.75% with maximum loss equal to 2.68%.
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these observations in Figure 4. If the regulator uses the second-best yardstick competition scheme

and sets penalties assuming (correctly) that to = t = 30, the average waiting time is 2.18 hours,

while the reimbursement per patient is $306. By increasing the penalty to to = 40 the waiting time

can be reduced to 1.78 hours on average at a cost of $317 per patient. This change entails less than

2% loss in welfare.

6. Extensions

In the previous sections we assumed that providers were acting as local monopolists. In this section

we summarize the results of an extension where providers compete for customers based on waiting

time and, where applicable, prices. Due to space restrictions, the full extension is presented in §EC.1

of this paper. We note below the main observations from this analysis. First, competition does not

provide enough incentives for providers to invest optimally in capacity or cost reduction. Therefore,

some regulatory intervention is warranted. Second, the standard cost-based yardstick competition is

still ineffective in incentivizing capacity investment, even when providers compete based on waiting

times. This happens because, in equilibrium, the marginal value of additional customers for each

provider is zero, therefore providers have no incentive to increase capacity. Third, the first-best

yardstick competition proposed in §4.3 for the monopoly setting still achieves first-best outcomes

in the presence of demand-side competition. Fourth, the simple second-best scheme proposed in

§4.4 – which reimburses providers based on their relative waiting-time performance – fails to

incentivize capacity investment in the presence of direct competition. This is because competition

renders the waiting-time benchmarks irrelevant – due to competition all (active) providers have

the same waiting time, irrespective of how much capacity they have installed. Nevertheless, we

show that there exits a relatively straightforward modification, based on dividing providers into

disjoint competing and non-competing sets, that restores second-best outcomes.

Furthermore, we are able to show that the model can be extended in a number of directions

(see §EC.2). Namely, we examine the case of multiple customer classes, time-varying arrivals, more

general cost structure, regulation based on tail-statistics instead of average waiting time, provider

heterogeneity, exogenous arrivals, and more general queueing models such as Jackson networks.

7. Conclusions

This paper investigates the use of yardstick competition, a regulatory scheme that creates cost-

reduction incentives (Shleifer 1985), in service settings where, in addition to cost control, the

regulator is also interested in incentivizing wait-time reduction. This scheme has proliferated in

the regulation (and reimbursement) of hospitals (Fetter 1991). As we summarize in Table 2, we

find that the standard form of yardstick competition fails in this second dimension of performance.
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Perhaps this finding helps explain the persistently long waiting times experienced by patients in

many healthcare systems.

We also present two alternative schemes that fare better. The first scheme, which involves a

provider-specific customer fee, achieves first-best investment in both cost and wait-time reduction,

but is rather difficult to implement in practice – besides the customer fee being politically sensitive

in the healthcare setting, this scheme places a high informational burden on the regulator with

respect to the queueing discipline. The second scheme, which assumes that the service is funded

exclusively through transfer payments (e.g., taxes or insurance premia), may be easier to imple-

ment. In essence, this scheme modifies the transfer payment of the standard cost-based yardstick

competition by adding a component which is decreasing in the difference between the average

waiting times of each provider and that of an exogenous benchmark constructed by averaging the

waiting time of all other providers. The simplicity of this second regulatory scheme comes at a cost

of efficiency as it no longer achieves first-best incentives. Nevertheless, as our numerical investiga-

tion illustrates, it is likely to be better than the status quo where waiting-time reduction is not

incentivized.

We hope that this paper will contribute to the current debate on how to best incentivize inves-

tment in waiting-time reduction in healthcare, particularly in EDs where waiting times have been

argued to be undesirably long. In fact, our paper provides a high-level guideline for regulators,

such as CMS in the US and the National Health Service (NHS) in the UK who have started moni-

toring ED waiting times, on how to use waiting-time information in the reimbursement formula.

We believe that this is a promising alternative to top-down targets, such as the four-hour target

that has been implemented in the UK for patients visiting EDs (see, e.g., Siddique (2016)).

Of course, the exact application may be complicated, especially by concerns about patient

selection based on service times or system congestion. We believe this may not be a problem in

practice, as was the case with the advent of cost-based yardstick competition which is not believed

to have given rise to significant selection based on costs. Nevertheless, understanding and mitiga-

ting selection problems that arise in the presence of waiting-time yardstick competition is an issue

that future research should address. An additional limitation of this work is that all of the schemes

proposed assume that the regulator knows the cost of customer waiting per unit time, t. This

may not always be the case, but, as we show in our numerical investigation, total welfare is not

sensitive to the precise value that it takes. In fact, one may view the waiting-time cost parameter,

t, as a lever that can be used to influence waiting times; by choosing to implement a regulatory

scheme with high t, the regulator shifts the equilibrium outcome towards lower waiting times at

the expense of higher costs, with little loss in overall welfare. Nevertheless, identifying a modified

scheme that does not require this information may be a promising direction for further research.
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Finally, we note that our analysis assumed that service providers are regional monopolists or com-

pete perfectly (see §EC.1). It would be of interest to examine the performance of the proposed

schemes under imperfect (horizontally differentiated) competition.
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Appendix
Proof of Proposition 1: Under the assumption that FOCs are necessary and sufficient to obtain the first-best

outcomes (see Appendix EC.3 for conditions that guarantee that this is the case), the first-best price, p∗, marginal

cost, c∗, and capacity, µ∗, are the unique solutions to ∂
∂p
S(p, c,µ) = 0, ∂

∂c
S(p, c,µ) = 0 and ∂

∂µ
S(p, c,µ) = 0, which

yield (10)–(12). The first-best transfer payment, T ∗, is obtained by solving for Π(c∗, µ∗|p∗, T ∗) = 0, which leads to

(13) by (4). �

Proof of Proposition 2: See proof of Proposition 1 in Shleifer (1985).

Proof of Proposition 3: Assume that the following sufficient condition in Shleifer (1985) holds (see §EC.3.2 for

details)

∂λ(c,µo)

∂c
+
∂2R(c,µo)

∂c2
> 0. (25)

For the regulatory scheme given in Proposition 1, by (4) provider i’s profit function is

Π(ci, µi|pi, Ti) = (c̄i− ci)λ(c̄i, µi)−R(ci, µi) + R̄i. (26)

Because ∂
∂µi

Π(ci, µi|pi, Ti) = (c̄i− ci) ∂
∂µi

λ(c̄i, µi)− ∂
∂µi

R(ci, µi), in any symmetric equilibrium where c̄i = ci, we have

∂
∂µi

Π(ci, µi|pi, Ti)< 0 for all µi ≥ µo. Thus, in all potential symmetric equilibria, all providers choose their default

capacity level, µo. Also, because R(c,µo) is convex, Π(ci, µo|pi, Ti) is concave in ci. By (4), provider i’s optimal

marginal cost is obtained by

∂

∂ci
Π(ci, µo|pi, Ti) =−λ(c̄i, µo)−

∂

∂ci
R(ci, µo) = 0, (27)

which holds at a unique ci = c̄i = c̆. Hence, there exists a unique symmetric equilibrium where all providers choose

capacity level µo and marginal cost level c̆ (and make zero profit). We next show that c̆ > c∗ under the additional

assumptions that ∂2R(c,µ)
∂c∂µ

≥ 0 and (25) holds for all µ≥ µo. If ∂2R(c,µ)
∂c∂µ

≥ 0, because λ(p,µ) is strictly increasing in

µ by (2), ∂
∂µ
W (λ,µ) < 0 and ∂

∂λ
W (λ,µ) > 0,

(
λ(c,µ) + ∂R(c,µ)

∂c

)
is strictly increasing in µ for c ∈ (0, co]. Thus, for

µ∗ >µo, we have

λ(c̆, µ∗) +
∂R(c̆, µ∗)

∂c
> λ(c̆, µo) +

∂R(c̆, µo)

∂c
= 0, (28)

where the equality follows from the fact that c̆ satisfies (27) by definition in the unique symmetric equilibrium.

By (25) if c∗ ≥ c̆, then

λ(c∗, µ∗) +
∂R(c∗, µ∗)

∂c
≥ λ(c̆, µ∗) +

∂R(c̆, µ∗)

∂c
,

which, along with (28), leads to λ(c∗, µ∗) + ∂R(c∗,µ∗)
∂c

> 0. However, this contradicts the optimality of (c∗, µ∗) in the

welfare maximization problem because (10) cannot hold. Thus c∗ < c̆. �

Proof of Theorem 1: Assume that the FOCs are necessary and sufficient to obtain the optimal actions of each

provider (see §EC.3.3 for sufficient conditions). If the regulator sets service provider i’s price equal to pi given in (16)

and transfer payment equal to Ti given in (17), provider i’s objective function is as given in (18) by (4). We next

show that there is a unique symmetric equilibrium. Let aj = (c̃, µ̃) denote the action of provider j for all j 6= i and let

λ̃ denote the associated arrival rate that satisfies (2) with price set as in (16).

By (18), the FOCs of Π for provider i are

∂

∂c
Π(ci, µi) =−λ̃− ∂

∂c
R(ci, µi) = 0, (29)

∂

∂µ
Π(ci, µi) =−t ∂

∂µ
W (µ̃, λ̃)λ̃− ∂

∂µ
R(ci, µi) = 0. (30)
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If c̃ = c∗ and µ̃ = µ∗, then λ̃ = λ∗ by (2) and (16). Because (10)–(12) have a unique solution, so do (29)–(30). In

addition, because FOCs are necessary and sufficient to obtain the optimal actions of each provider, (c∗, µ∗) is a Nash

equilibrium. It is easy to check that providers make zero profit in equilibrium.

Now consider any other c̃ and µ̃. In order for provider i to pick the same actions, c̃ and µ̃ have to satisfy the FOCs

(29) and (30) because the FOCs are necessary and sufficient to obtain the optimal actions of each provider. However,

because S has a unique optimal solution and the FOCs are sufficient, for c̃ and µ̃ to be a solution to (29) and (30),

they must satisfy c̃= c∗ and µ̃= µ∗. Hence, (c∗, µ∗) is the unique symmetric equilibrium. �

Proof of Theorem 2: Assume that the FOCs are necessary and sufficient to obtain the optimal actions of each

provider (see § EC.3.5 for sufficient conditions). Assume that the regulator pays the transfer payment Ti defined as

in (23) to provider i, for i= 1, . . . ,N , and customers are not charged a toll. The proof of the result is similar to that

of Theorem 1.

When patients are not charged a toll, the objective of the regulator is

S(c,µ) = Λ

∫ ∞
tW (λ(µ),µ)

(x− tW (λ(µ), µ))dΘ(x)− cλ(µ)−R(c,µ). (31)

By Leibniz rule ∂
∂y

(
Λ
∫∞

Θ̄−1( y
Λ ) xdΘ(x)

)
= Θ̄−1

(
y
Λ

)
for y ∈ [0,Λ]. Hence, by (2), the FOCs of S(c,µ) are given by

(19) and (20). Because FOCs are assumed to be necessary and sufficient, (19) and (20) have a unique solution, which

is µ∗o and c∗o.

We next show that µi = µ∗o and ci = c∗o for i= 1, . . . ,N is an equilibrium under the scheme given in Theorem 2.

Assume that each provider, except provider i, picks (c̃, µ̃). Then, by (24) provider i’s optimal actions satisfy

∂

∂c
Π(c,µ) =−λ(µ)− ∂

∂c
R(c,µ) = 0, (32)

∂

∂µ
Π(c,µ) =−cλ′(µ)− tλ̃ ∂

∂µ
W (λ(µ), µ)− ∂

∂µ
R(c,µ) = 0, (33)

because the FOCs are necessary and sufficient to obtain the optimal actions of each provider. If c̃= c∗o and µ̃= µ∗o,

because (19) and (20) have a unique solution (c∗o, µ
∗
o), so do (32) and (33). Because (c∗o, µ

∗
o) is the solution to (19) and

(20), (c∗o, µ
∗
o) is a symmetric equilibrium. It can easily be shown that providers make zero profit in this equilibrium.

Uniqueness of the symmetric equilibrium follows as in the proof of Theorem 1. �
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