
Crowdsourcing Exploration

Yiangos Papanastasiou
Haas School of Business, University of California Berkeley · yiangos@haas.berkeley.edu

Kostas Bimpikis
Graduate School of Business, Stanford University · kostasb@stanford.edu

Nicos Savva
London Business School · nsavva@london.edu

Motivated by the proliferation of online platforms that collect and disseminate consumers’ experiences with

alternative substitutable products/services, we investigate the problem of optimal information provision

when the goal is to maximize aggregate consumer surplus. We develop a decentralized multi-armed bandit

framework where a forward-looking principal (the platform designer) commits upfront to a policy that

dynamically discloses information regarding the history of outcomes to a series of short-lived rational agents

(the consumers). We demonstrate that consumer surplus is non-monotone in the accuracy of the designer’s

information-provision policy. Because consumers are constantly in “exploitation” mode, policies that disclose

accurate information on past outcomes suffer from inadequate “exploration.” We illustrate how the designer

can (partially) alleviate this inefficiency by employing a policy that strategically obfuscates the information

in the platform’s possession – interestingly, such a policy is beneficial despite the fact that consumers are

aware of both the designer’s objective and the precise way by which information is being disclosed to them.

More generally, we show that the optimal information-provision policy can be obtained as the solution

of a large-scale linear program. Noting that such a solution is typically intractable, we use our structural

findings to design an intuitive heuristic that underscores the value of information obfuscation in decentralized

learning. We further highlight that obfuscation remains beneficial even if the designer can directly incentivize

consumers to explore through monetary payments.
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1. Introduction

In the short span of just over ten years since the term was first coined, crowdsourcing has dra-

matically increased the availability of information that is relevant to a range of everyday decisions.

Drawing on the experiences of members of their online communities, platforms hosting specialized

content now exist that assist their users in choosing between alternative service providers (e.g.,

Yelp), products (e.g., Epinions), driving routes (e.g., Waze), physicians (e.g., RateMDs), holiday

destinations (e.g., TripAdvisor), and so on.

Motivated by the proliferation of these platforms, we study an inherent inefficiency of social

learning in settings characterized by decentralized information generation. In particular, the crit-

ical feature of the settings we consider is that new information is generated by individual agents

1
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as a by-product of a self-interested choice among alternative options, and without regard for the

informational externality that their experience exerts on the choices and welfare of future agents.

From the perspective of the society as a whole, this translates into inefficiency which may mani-

fest, for example, as situations where “winners keep winning,” while less-explored but potentially

superior options are not afforded the chance to demonstrate their worth.1

Since the choices of individual agents – and therefore the new information they generate –

are directly related to the information they observe prior to their choice, alternative modes of

information provision may result in different modes of information generation. This notion is the

focus of our paper.

We consider a simple model in which a population of homogeneous agents (referred to throughout

as “consumers”) visit a platform sequentially, observe information pertaining to the experiences

of their predecessors, and choose among alternative options (“service providers”). After receiving

service from her chosen provider, each consumer reports to the platform whether the service she

received was a success or a failure. Upon being selected, each provider generates a successful service

outcome with a fixed probability that represents the provider’s quality – this probability is unknown

throughout, but can be learned (in the Bayesian sense) by observing the provider’s history of

service outcomes. At any time, the history of service outcomes is recorded by the platform, but

is not necessarily observable to the consumers. Instead, there is a principal (“platform designer”)

who commits upfront to an information-provision policy which specifies the information posted

on the platform at any time, given any possible recorded history. The designer’s objective is to

maximizing the consumers’ aggregate discounted surplus over an infinite horizon. By contrast, each

consumer seeks to maximize only her individual surplus through her choice of provider.

At the core of our model is the friction between the objectives of the forward-looking designer and

the short-sighted consumers: the designer would like consumers to make decisions (i.e., provider

choices) that benefit not only themselves (through their service experience) but also their successors

(through the knowledge that their experience generates). Had consumers’ actions been under the

designer’s full control, the designer would be faced with a classic instance of the multi-armed

bandit problem (MAB; see Gittins et al. (2011)). The solution to this classic problem, which

resolves the well-known “exploration-versus-exploitation” trade-off, is due to Gittins and Jones

(1974), and consists of using in each period the arm of highest Gittins index. The challenge faced

by the designer is to structure the information on which consumers base their actions, so as to

1 Similar inefficiencies may also arise in “offline” instances of decentralized learning. For example, progress in research
may be hampered by individual researchers’ incentives to exploit existing knowledge with a view towards publication,
rather than explore new research methods/topics; experimentation in new product development may suffer from R&D
managers’ preference to use proven methods that guarantee finished products; etc.
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influence their decisions in a manner that serves the goal of consumer-surplus maximization. Doing

so is challenging, because consumers are not naive: they are aware of both the designer’s objective

and the way in which information is being disclosed to them. Thus, the designer’s effectiveness in

managing the dynamic exploration-exploitation trade-off is directly linked to his ability to design

an information-provision policy that “persuades” the self-interested consumers to take his desired

actions.

We analyze first a special case of our model where there are two providers, one of which has a

known quality, and use this case to highlight the qualitative nature of optimal policies. First, we

evaluate the performance of policies belonging to the two extreme modes of information provision:

“no-information” (NI), where the platform conceals all information in its possession at all times,

and “full-information” (FI), where the platform discloses precisely all information in its possession

at all times. We demonstrate that FI outperforms NI, but fails to achieve first best (i.e., the payoff

achieved when the consumers’ actions are under the designer’s full control). The latter observation

follows from existing knowledge on the MAB problem: consumers’ choices under FI reduce to the

“myopic” policy in the classic MAB, which is known to be suboptimal.

More importantly, we show that the designer (subject to a simple condition) can in fact achieve

first best in the decentralized system, by employing a policy which is deliberately less-than-fully

informative (i.e., a policy which lies, in a qualitative sense, between the two extremes of NI and

FI). Under the optimal policy, rather than providing consumers with a precise history of service

outcomes, the platform employs a coarser, “many-to-few” information structure: several histories

are merged and mapped to the same configuration of information (e.g., this may take the form

of a simple recommendation or a simple ranking of the alternative providers). We make precise

the manner by which such policies are structured, and demonstrate how the consumers’ Bayesian

interpretation of the information they observe causes them to choose the designer’s desired provider

– interestingly, this occurs even though consumers know the designer’s objective and the policy by

which information is being disclosed to them.

We then turn our attention to the more involved problem of designing an information-provision

policy for the designer’s general problem (i.e., where the qualities of all providers are ex ante

unknown). Here, we demonstrate that first best is typically infeasible, but that optimal policies

maintain the feature of information obfuscation. We illustrate that the designer’s problem can be

formulated as a Constrained Markov Decision Process (CMDP) and show that the optimal policy

can be obtained as the solution of a large-scale linear program. While such a solution is typically

intractable computationally, we leverage the problem’s structure to propose a heuristic solution

which underscores the value of information obfuscation in decentralized learning. In particular,
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we observe that our heuristic – which implements information obfuscation only suboptimally –

performs close to first best, and significantly better than FI, in all our numerical experiments.2

Finally, we consider an extension of our model where the designer, in conjunction with his

information-provision policy, can also employ monetary subsidies to directly incentivize the con-

sumers to engage in exploration. Although the problem of optimally combining information provi-

sion with subsidies appears to be significantly more complex than its information-only counterpart,

we show that the dominant class of policies is one that involves information obfuscation, consistent

with the rest of our analysis. Specifically, we establish that less-than-fully informative policies allow

the designer to achieve any feasible level of consumer surplus at a minimum total subsidy cost –

this finding highlights the importance of information provision over and above more traditional

means of resolving incentive misalignments, such as monetary transfers.

2. Related Literature

The multi-armed bandit (MAB) problem is recognized as the epitome of the exploration-versus-

exploitation trade-off. In the classic version of the MAB problem (see Gittins et al. (2011)), a

forward-looking decision maker chooses sequentially between alternative arms, each of which gen-

erates rewards according to an ex ante unknown distribution. Every time an arm is chosen, the

decision maker receives a reward which, apart from its intrinsic value, is used to learn about the

arm’s underlying reward distribution. At any decision epoch, the decision maker may choose the

arm he currently believes to be superior (exploitation), or an alternative arm with the goal of

acquiring knowledge that can be used to make better-informed decisions in the future (exploration).

Since its inception, the MAB problem has been extended in multiple directions to investigate

exploration-versus-exploitation trade-offs that are encountered in various practical settings. For

example, Caro and Gallien (2007) study dynamic assortment of seasonal goods in the presence of

demand learning, while Bertsimas and Mersereau (2007) consider a marketer learning the efficacy

of alternative marketing messages.3

In most existing applications of the MAB, a single decision maker dynamically decides on the

actions to be taken while observing the outcomes of his past actions. By contrast, the problem we

study in the present paper is essentially a decentralized MAB: there is a forward-looking principal

2 The disclosure of information on the basis of coarse, less-than-fully transparent information structures appears
consistent with practical observations. For example, TripAdvisor and Yelp rank providers in a manner that sometimes
appears to be inconsistent with the underlying content of consumer reviews (e.g., TripAdvisor 2013); Booking.com
includes in its rankings only providers that have received at least a specific number of reviews, thus withholding the
initial information it receives from its users; Netflix and Pandora deliver recommendations without providing details
on how these recommendations have been generated.

3 Alizamir et al. (2013), Anand et al. (2011) and Kostami and Rajagopalan (2013) study a related trade-off between
improving the quality of service and reducing waiting times in congested systems.
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(the designer) who seeks to maximize the sum of discounted rewards, while actions are taken by

a series of short-lived agents (the consumers). In related work, Lobel et al. (2015) consider the

problem faced by a forward-looking firm selling its products through a myopic salesforce, and

propose an asymptotically regret-optimal strategy that involves the firm sequentially “dropping”

products deemed to be suboptimal. A similar setup to ours is used in Frazier et al. (2014) to

investigate how the principal can incentivize the agents to take his desired actions by offering direct

monetary payments. In their setting, the history of actions and outcomes is assumed to be common

knowledge and there is, therefore, no attempt at investigating the issue of optimal information

provision. In our model, the only lever that the principal uses to influence consumers’ actions is

his information-provision policy.

In the latter respect our work is related to, but quite distinct from, the well-developed litera-

ture on “cheap talk” (e.g., Crawford and Sobel 1982, Allon et al. 2011). In cheap-talk games, the

principal privately observes the realization of an informative signal, after which he (costlessly) com-

municates any message he wants to the agent. In this work, there is emphasis on how the message

received by the agent is interpreted, and whether any information can be credibly transmitted by

the principal. By contrast, the principal in our setting commits ex ante to an information-provision

policy which maps realizations of the informative signal to messages. Once this policy has been

decided and implemented, the principal cannot manipulate the information he discloses (e.g., by

misrepresenting the signal realization). In this case, there is no issue of how the agents will inter-

pret the messages; rather, our focus is on how the principal should structure credible messages in

a manner that internalizes the misalignment between his and the consumers’ objectives.

Our paper is therefore more in the spirit of the recent stream of literature that examines how

a principal can design/re-structure informative signals in ways that render agents ex ante more

likely to take desirable actions. Bimpikis and Drakopoulos (2015) find that in order to overcome the

adverse effects of free-riding, teams of agents working separately towards the same goal should ini-

tially not be allowed to share their progress for some pre-determined amount of time. Bimpikis et al.

(2015) investigate innovation contests and demonstrate how award structures should be designed

so as to implicitly enforce information-sharing mechanisms that incentivize participants to remain

active in the contest. Kamenica and Gentzkow (2011) and Rayo and Segal (2010) illustrate an

explicit technique for structuring informative signals – referred to as “Bayesian persuasion” – in

static (i.e., one-shot) settings. In the context of decentralized learning, variants of Bayesian persua-

sion are employed in two recent papers. Kremer et al. (2013) focus on eliciting experimentation in

an environment where outcomes are deterministic, while Che and Hörner (2014) consider a single-

product setting where a designer at any time optimally “spams” a fraction of consumers to learn
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about the product’s quality. In both papers, once any information is received by the designer, prod-

uct quality is perfectly revealed; as a result, there is initially a full-exploration period, which is then

followed by full exploitation. By contrast, the main difficulty faced by the designer in our model is

to effectively manage a dynamic exploration-exploitation trade-off in a stochastic environment.

The information accumulated by the platform in our model is continuously updated via con-

sumers’ reported experiences, which (through the designer’s information-disclosure policy) influence

the decisions of subsequent consumers. In this respect, our paper connects to the work on social

learning. The basic setup involves agents (e.g., consumers) that are initially endowed with private

information regarding some unobservable state of the world (e.g., product quality). When actions

(e.g., purchase decisions) are taken sequentially and are commonly observable, the seminal papers

by Banerjee (1992) and Bikhchandani et al. (1992) demonstrate that herds may be triggered,

whereby agents rationally disregard their private information and simply mimic the action of their

predecessor. This classic paradigm has since been extended in multiple directions to investigate,

for example, learning in social networks (e.g., Acemoglu et al. 2011) and learning among agents

with heterogeneous preferences (e.g., Lobel and Sadler 2015).

While the above papers focus on studying features of the learning process itself, another stream

of literature investigates how firms can use their operational levers to steer the social-learning

process to their advantage. Bose et al. (2006) and Ifrach et al. (2014) investigate dynamic pricing

in the presence of social learning that occurs on the basis of actions (i.e., purchase decisions) and

outcomes (i.e., product reviews), respectively. Veeraraghavan and Debo (2009) and Debo et al.

(2012) consider how customers’ queue-joining behavior depends on observable queue-length, and

how service-rate decisions may be used to influence this behavior. Papanastasiou and Savva (2016)

and Yu et al. (2013) highlight how pricing policies are affected by the interaction between product

reviews and strategic consumer behavior (see also Swinney (2011)), while Papanastasiou et al.

(2014) illustrate the beneficial effects of scarcity strategies when consumers learn according to

an intuitive non-Bayesian rule. We contribute to this literature by investigating how the firm

(platform) can influence consumer decisions and learning through its information-provision policy, a

lever which may also be used in conjunction with other operational levers (e.g., pricing, inventory).

Finally, this paper also contributes to a recent line of work which studies operational decisions

in the context of Internet-enabled business models. Among others, Marinesi and Girotra (2013)

examine how customer voting systems should be designed when firms seek to acquire information

to improve pricing and product-design decisions; Ye et al. (2015) investigate how an online retailer

should combine sponsored-search marketing with dynamic pricing; Balseiro et al. (2014) consider

the problem faced by a web publisher in deciding how to allocate advertising slots between spot

markets (ad exchanges) and pre-arranged contracts (reservations). In this paper, we investigate
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how the information-provision policy of an online platform can be used to influenced the decisions

of its users.

3. Model Description

We consider a decentralized learning setting, where a series of agents interact with a principal

who manages the disclosure of information regarding the experiences of their predecessors. For

concreteness, we anchor our exposition in the example of an online platform which is operated by

a designer and is used by consumers to assist with their choice of service provider. We suppose

that the marketplace consists of two providers, A and B; let S = {A,B}.4 Each provider i ∈ S

is fully characterized by a probability pi which represents the provider’s service quality. Upon

using provider i, a consumer receives reward equal to one with probability pi, and equal to zero

with probability 1− pi; that is, service outcomes constitute independent draws from a Bernoulli

distribution with success probability pi. Initially, pi is known to the designer and the consumers

only to the extent of a common prior belief, which is expressed in our model through a Beta random

variable with shape parameters {si1, f i1}, si1, f i1 ∈Z+.5,6

At the beginning of each time period t∈ T , T = {1,2, ...}, a single consumer visits the platform,

observes information pertaining to the experiences of past consumers, and chooses a provider. We

assume that upon completion of service, and before the end of period t, the consumer reports to

the platform whether her experience was positive or negative (i.e., a Bernoulli success or failure).

At any time t, the knowledge accumulated by the platform is summarized by the information state

(henceforth “state”) xt = {xAt , xBt }, where xit = {sit, f it} and sit (f it ) is the accumulated number of

successful (failed) service outcomes for provider i up to period t (this includes the initial successes

and failures, si1 and f i1, specified in the prior belief). When the system state is xt, the Bayesian

posterior belief over the quality pi is Beta(sit, f
i
t ), and the expected reward of the next customer

to use provider i is r(xt, i) = sit
sit+f

i
t

(e.g., see DeGroot 2005, Chapter 9).

At any time, the history of service outcomes (i.e., the system state xt) is not directly observable to

the consumers. Instead, there is a platform designer who commits upfront to a “messaging policy”

that acts as an instrument of information-provision to the consumers.7 This policy specifies the

message that is displayed on the platform, given any underlying system state; in §7.2, we extend

4 The general analysis in §6 can be readily extended to the case of |S|> 2 providers.

5 The probability density function of a Beta(s, f) random variable is given by g(x;s, f) = xs−1(1−x)f−1

B(s,f)
, for x∈ [0,1].

6 The platform and the consumers hold the same prior belief, so that platform actions (e.g., choice of information-
provision policy) do not convey any additional information on provider quality to the consumers (e.g., Bergemann
and Välimäki 1997, Bose et al. 2006, Papanastasiou and Savva 2016).

7 Commitment is a reasonable assumption in the context of online platforms, where information provision occurs on
the basis of pre-decided algorithms and the large volume of products/services hosted renders ad-hoc adjustments of
the automatically-generated content prohibitively costly (see also §5.4, where this assumption is relaxed).
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our analysis to the case where messages may also be accompanied by monetary payments.8 The

designer’s objective in choosing his messaging policy is to maximize the expected sum of consumers’

discounted rewards over an infinite horizon (i.e., consumer surplus), applying a discount factor

of δ ∈ [0,1).9 Consumers are modelled as homogeneous, short-lived, rational agents. In our main

analysis, we assume that consumers know the period of their arrival; we relax this assumption in

§7.1. Upon visiting the platform, each consumer observes a message generated by the designer’s

policy and chooses a service provider with the goal of maximizing her individual expected reward.

The designer’s choice of messaging policy, along with the consumers’ choices of service provider

in response to this policy, simultaneously govern the dynamics of both the learning process and

the consumers’ reward stream.

4. Analysis Preliminaries

Equilibrium and Model Dynamics We begin our analysis by formalizing the strategic inter-

action between the designer and the consumers. There are two main features of this interaction.

First, the designer’s messaging policy, which takes the platform state as an input and generates a

message to be displayed by the platform to the next incoming consumer. Second, the consumers’

choice strategy, which takes the platform’s message in any given period as an input and determines

the consumer’s action (choice of provider).

Let X ⊆ Z4
+ denote the set of possible states of the platform such that xt ∈ X for all t ∈ T ,

and define the discrete set M of feasible messages that the platform can display to an incoming

consumer in period t (see footnote 8). A messaging policy g(·) is a (possibly stochastic) mapping

from the set of states X to the set of messages M ; that is, a messaging policy g associates with

each state xt ∈X a probability P (g(xt) =m) that message m ∈M is displayed on the platform.

Let G be the set of possible messaging policies. In each period t, a single consumer enters the

system, observes the platform’s message and chooses a service provider from the set S. The period-t

consumer’s choice strategy, denoted by ct(·), is a mapping from the set of messages M to the set

of service providers S. Let Ct be the set of possible choice strategies for the period-t consumer, and

define c(·) := [c1(·), c2(·), ...].

The designer’s messaging policy g along with the consumers’ choice strategy c generate a con-

trolled Markov chain characterized by the stochastic state-action pairs {(xt, yt); t ∈ T}, where the

8 The generic term “message” refers to a specific configuration of information that is observed by the consumer;
examples of messages include detailed outcome histories (i.e., distributions of consumer reviews), relative rankings of
providers, recommendations for a specific product, etc.

9 More generally, our analysis is relevant for cases where the platform has a different (e.g., longer-run) objective than
its users. Similar objective functions as ours are commonly employed in decentralized learning models (e.g., Frazier
et al. 2014, Lobel et al. 2015).
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actions yt that accompany the states xt are determined by the designer’s policy and the consumers’

strategy via yt = ct(g(xt)). When the state of the system is xt, the expected reward of a consumer

that uses provider i is r(xt, i) = sit
sit+f

i
t
. Transitions between system states occur as follows. The ini-

tial state x1 is determined by the prior belief over the two providers; when the state of the system

is xt and action yt is chosen by the period-t consumer, the state in period t+ 1, xt+1 = {xAt+1, x
B
t+1}

is determined as follows

xit+1 = xit for i 6= yt, xit+1 =

{
{sit + 1, f it} w.p. r(xt, i)

{sit, f it + 1} w.p. 1− r(xt, i)
for i= yt.

The above transition probabilities reflect the learning dynamics of the system: new information

regarding the quality of provider i is generated in period t only if the provider is chosen by the

period-t consumer.10

The sequence of events in our model is described in reverse chronological order as follows. Each

consumer observes the designer’s messaging policy and chooses a choice strategy ct to maximize her

individual expected reward. In particular, the period-t consumer’s response to message m, c∗t (m)

maximizes

Ext [r(xt, ct) | g(xt) =m] .11

At the beginning of the time horizon, the designer (taking into account the consumers’ response

to any messaging policy), commits to a policy that maximizes the expected sum of consumers’

discounted rewards. In particular, the designer’s messaging policy g∗(xt) maximizes

E

[∑
t∈T

δt−1r(xt, yt)

]
, for yt = c∗t (g(xt)).

Incentive-Compatible Recommendation Policies In general, multiple equilibria exist that

result in the same payoff for the designer and the consumers, and the same dynamics in the

learning process, not least because the same information can be conveyed from the designer to

the consumers through a multitude of interchangeable messages contained in M . We follow Allon

et al. (2011) in referring to such equilibria as being “dynamics-and-outcome equivalent” (DOE).

In our analysis, we will employ the result of Lemma 1 below to avoid redundancies in exposition

and focus attention on the informational content of equilibria, rather than on the alternative ways

in which these equilibria can be implemented. Before stating the lemma, we define a subclass of

messaging policies which we refer to as “incentive-compatible recommendation policies.”

10 Note that for the case of a Bernoulli reward process the current probability of success (i.e., the Bayesian probability
of the next trial being a success given the current state of the system) is equal to the immediate expected reward,
r(xt, i) (e.g., Gittins et al. 2011).

11 This expectation can be computed by the period-t consumer, since the ex ante probability that the state in period
t is xt (i.e., unconditional on the message g(xt)) is known to the consumer through her knowledge of the designer’s
policy in previous periods and the preceding consumers’ best response to this policy.
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Definition 1 (ICRP: Incentive-Compatible Recommendation Policy). A recommen-

dation policy is a messaging policy defined as

g(xt) =

{
A w.p. qxt
B w.p. 1− qxt ,

(1)

where qxt ∈ [0,1] for all xt ∈X. A recommendation policy is said to be incentive-compatible if for

all xt ∈X, t∈ T , we have c∗t (g(xt)) = g(xt).

Put simply, under an ICRP the platform recommends either provider A or provider B to the period-

t consumer, and the consumer finds it Bayes-rational to follow this recommendation. We may now

state the following result, which is analogous to the revelation principle in the mechanism-design

literature, and suggests that any feasible platform payoff can be achieved through some ICRP.

Lemma 1. For any arbitrary messaging policy g, there exists an ICRP g′ which induces a DOE

equilibrium in the game between the designer and the consumers.

All proofs are provided in Appendix B. In the proof of Lemma 1, we illustrate how an ICRP can

be constructed from any messaging policy so as to induce an equivalent choice strategy from the

consumers. Essentially, the process consists of replacing the original messages with recommenda-

tions of the consumer actions that these messages would induce; examples of the correspondence

between messaging policies and ICRPs appear in the following sections.

First Best Before analyzing the decentralized system, let us consider how the designer would

direct individual consumers to the two providers, had consumers been under his full control. The

solution to the designer’s full-control problem is due to Gittins and Jones (1974) and consists of

directing consumers in each period to the provider with the highest Dynamic Allocation Index,

also known as the Gittins Index. The Gittins index for service i when in state zi is denoted by

Gi(z
i) and given by

Gi(z
i) = sup

τ>0

E
[∑τ−1

t=0 δ
tr(xit, i) | xi0 = zi

]
E
[∑τ−1

t=0 δ
t | xi0 = zi

] , (2)

where τ is a past-measurable stopping time (i.e., measurable with respect to the information

obtained up to time τ) and r(xit, i) is the instantaneous expected reward of provider i in state xit.

In the decentralized system, the designer’s ability to direct consumers to his desired provider

will be limited by the consumers’ self-interested behavior. Each consumer knows (i) the prior belief

summarized by the initial state, x1; (ii) the time period, t (relaxed in §7.1); and (iii) the designer’s

messaging policy, g. Upon visiting the platform, the consumer observes a message m, updates her

belief over the current system state, xt, and selects the provider which maximizes her individual
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expected reward. As a consequence, the designer will be able to achieve first-best only if he can

design a messaging policy which induces consumers to make Gittins-optimal decisions in all periods

and in all system states – a sufficient condition for at least one such messaging policy to exist is

the existence of an ICRP which always recommends the provider of highest Gittins index.

Throughout the following analysis we will refer to provider choices that are desirable from the

platform’s perspective as being “system-optimal.”

5. Simple Case: Incumbent Provider B

We analyze first a simple version of our model, where there is one provider whose quality is ex

ante unknown (provider A) and one incumbent provider whose quality is known with certainty

(provider B). The analysis of this section serves to build intuition and highlight the main features

of optimal messaging policies, within a simplified setting which is amenable to direct analytical

treatment. The designer’s general problem is considered subsequently in §6.

Let the prior belief over provider A’s service quality be Beta(sA1 , f
A
1 ) and recall that the expected

reward of a consumer who chooses service A in period t is given by r(xt,A) = sAt
sAt +fAt

, where xt

is the system state. For provider B, let the service quality be known and equal to pB, such that

the expected immediate reward of a consumer who chooses service B at any time t is simply

rB := r(xt,B) = pB. We suppose, for simplicity, that if the designer and/or the consumers are

indifferent between the two providers, provider B is preferred.

5.1. First Best

It will be useful to first characterize the provider choices which result when the full-control policy

described in §4 is applied to the simplified setting considered here. To begin, note that since the

quality of provider B is known with certainty, the provider has a constant Gittins index of GB :=

GB(xt) = rB (Gittins et al. 2011, Chapter 7). Therefore, if the designer finds it system-optimal to

use service B in some period t= k, then this must also be the case in all subsequent periods t > k.

As a result, system-optimal provider choices can be described in terms of “success thresholds” for

provider A.

Lemma 2. System-optimal provider choices are characterized as follows:

(i) If GA(x1)≤GB, then any experimentation with service A is suboptimal; that is, it is system-

optimal to use service B in all periods t∈ T .

(ii) If GA(x1) > GB, then it is system-optimal to experiment with service A at least once in

period t = 1. In any period t > 1, there exists an integer s∗(t) such that if sAt ≥ s∗(t) it is

system-optimal to continue experimentation with service A in period t, while if sAt < s∗(t) it
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is system-optimal to choose service B in period t and forever after. The period-t threshold

s∗(t) is uniquely defined by

s∗(t) = {minsAt : sAt , f
A
t ∈Z2

+, (sAt − sA1 ) + (fAt − fA1 ) = t− 1, GA(xt)>GB}.

In the first case of Lemma 2, experimentation with provider A is unattractive from the onset.

Noting that GB = rB, intuitively, if the incumbent’s quality is sufficiently high, then there is no

rationale for the designer to engage in any experimentation with the new provider. In the second

case of the lemma, experimentation with the new provider is attractive for the designer to begin

with, but may cease to be so as more information about the new provider’s quality is acquired in

the early periods of the horizon: in any period (and provided experimentation with provider A has

not already been terminated), there exists a threshold on the number of accumulated successful

outcomes with provider A that is required for A to remain the system-optimal choice.

5.2. The Two Extreme Modes of Information Provision

Let us now return to the decentralized model. Each consumer (knowing the platform’s messaging

policy) receives a message and chooses a provider to maximize her individual expected reward. In

terms of the informational content of alternative policies that may be employed by the designer,

there are two extreme modes of information provision; we consider each of these in turn.

At one extreme, the designer may employ a policy which is completely uninformative, in the sense

that the messages disclosed to the consumers reveal nothing about the platform’s accumulated

knowledge. For instance, the platform may disclose the same message to consumers at any time

t (or indeed no message at all), irrespective of the underlying state xt – policies of this kind are

said to belong to the “no information” (NI) regime. Under NI, consumers’ choices in every period

are trivially dictated by the prior belief. As a result, either all consumers choose service A (when

r(x1,A)> rB), or all consumers choose service B (when r(x1,A)≤ rB), and there is no adaptation

of consumer actions to the service record of each provider.12

At the other extreme, the designer may employ a policy which is fully informative, that is, a

policy which discloses a distinct message for every system state (e.g., a detailed outcome history,

g(xt) = xt) – policies of this kind are said to belong to the “full information” (FI) regime. Under

FI, each consumer chooses the provider which yields the highest immediate expected reward, given

precise knowledge of the system state xt.
13 Lemma 3 summarizes the period-t consumer’s choice.

12 The unique ICRP which corresponds to the NI regime is thus

g(xt) =

{
A if r(x1,A)> rB ,

B if r(x1,A)≤ rB ,

13 The unique ICRP which corresponds to the FI regime is
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Lemma 3. Consumers’ choices of provider under policies belonging to the FI regime are char-

acterized as follows:

(i) If r(x1,A)≤ rB, then consumers choose service B in all periods t∈ T .

(ii) If r(x1,A) > rB, then the period-1 consumer chooses service A. In any period t > 1, there

exists an integer s̄(t) such that if sAt ≥ s̄(t) the period-t consumer chooses service A, while

if sAt < s̄(t) service B is chosen in period t and forever after. The period-t threshold s̄(t) is

uniquely defined by

s̄(t) = {minsAt : sAt , f
A
t ∈Z2

+, (sAt − sA1 ) + (fAt − fA1 ) = t− 1, r(xt,A)> rB}.

Consumers’ choices in Lemma 3 display a similar structure with the system-optimal choices of

Lemma 2, but a closer comparison reveals two potential sources of inefficiency of the FI regime.

First, if the prior belief over provider A’s quality is such that r(x1,A)≤ rB, then no experimentation

with service A is undertaken by the consumers under FI. This behavior is system-optimal only when

it is also true that GA(x1)≤GB; by contrast, if r(x1,A)< rB and GA(x1)>GB, the designer wishes

for some experimentation to occur, but experimentation is never undertaken by the consumers.

The second source of inefficiency arises when r(x1,A) > rB. In this case, experimentation with

service A occurs in period t= 1 and is also system-optimal (this follows from GA(xA1 )≥ r(x1,A);

see Gittins et al. (2011), Chapter 7). Nevertheless, the extent to which experimentation occurs can

be suboptimal, in particular, if there is a discrepancy between any of the period-t thresholds s̄A(t)

and s∗A(t). The following lemma characterizes this discrepancy.

Lemma 4. The thresholds s∗(t) and s̄(t) satisfy s∗(t)≤ s̄(t).

Lemma 4 suggests that the FI regime suffers from under-exploration: the self-interested consumers

tend to abandon learning about provider A’s quality prematurely, before the system-optimal

amount of experimentation has occurred; this is illustrated in the following example.14

Example 1. Suppose that the prior belief over service provider A’s quality is Beta(1,1), service

B has a known quality pB = 0.27 and the discount factor is δ = 0.9. Suppose further that the

designer adopts a messaging policy belonging to the FI regime. In this case, the first consumer

chooses provider A (expected payoff 0.5> 0.27). In the second period, we have s̄(2) = 1; therefore,

even if the period-1 consumer’s experience was negative, the second consumer still uses provider

A (expected payoff of 0.3̇ > 0.27). In the third period, we have s̄(3) = 2; therefore, if both the

g(xt) =

{
A if r(xt,A)> rB

B if r(xt,A)≤ rB ,

14 Equality holds in Lemma 4 for all t when the designer’s discount rate is sufficiently low, since in this case the
designer is effectively myopic, as are the consumers.
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period-1 and the period-2 consumers’ experiences were negative, the period-3 consumer abandons

experimentation with provider A (expected payoff 0.25 < 0.27) and chooses provider B, as do

all consumers thereafter. By contrast, system-optimal provider choices as described in Lemma 2

dictate further experimentation with service A; in particular, we have s∗(3) = 1< s̄(3).

To conclude our discussion of the two extreme modes of information-provision, we present the

next result which follows directly from, and summarizes, the preceding discussion.

Proposition 1. Denote by πNI and πFI the platform’s expected payoff under policies belonging

to the NI and FI regimes, respectively. Then

πNI ≤ πFI ≤ π∗,

where π∗ denotes the platform’s first-best expected payoff.

Put simply, FI policies outperform NI policies, but both extreme modes of information-provision

fail to achieve first best (i.e., the payoff achieved when the designer has full control over the

consumers’ actions). Equality holds on the left-hand side of the expression when experimentation

with the new provider is never undertaken by the consumers under either the FI or NI regimes

(i.e., when r(x1,A) ≤ rB). Equality on the right-hand side holds when experimentation is never

undertaken under the FI regime, and at the same time experimentation is never system-optimal

(i.e., when r(x1,A)≤ rB and GA(xA1 )≤GB).

5.3. Strategic Information Provision

By moving from NI to FI, the designer enables consumers to learn from the experiences of their

predecessors and adapt their choices of provider accordingly. This results in an improvement in

the platform’s payoff, however, the designer fails to achieve first best. The shortfall occurs because

consumers do not internalize the informational externality of their actions on future users of the

platform: consumers always choose the provider which maximizes their individual reward, while

the designer would sometimes prefer them to choose a different provider in order to generate

information that is of value to future consumers.

In this section, we address the question of whether the designer can do better than FI in the

decentralized system, and if so how. We demonstrate that (i) subject to a simple condition on the

initial system state, an optimal messaging policy fully restores efficiency in the decentralized system,

and (ii) optimal messaging policies are characterized by deliberate and controlled obfuscation of the

information in the platform’s possession. Interestingly, in order to restore first best, the designer

is required to intervene to restrict consumers’ ability to learn from each other.

We begin by establishing the simple condition under which the designer can achieve first best in

the decentralized system.
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Proposition 2. For initial system state x1, let g∗ be an optimal messaging policy and denote

by π(g∗) the platform’s expected payoff under policy g∗. Then π(g∗) = π∗, unless both r(x1,A)≤ rB
and GA(x1)>GB hold.

Roughly speaking, first best cannot be achieved by the designer only when the expected quality

of the unknown provider A is initially close to, but lower than, the quality of provider B. In such

cases, the new provider appears to be a promising prospect from the designer’s perspective, but is

never given the chance to “prove his worth” by the self-interested consumers, all of which inevitably

select the incumbent provider B. When this occurs, the designer’s choice of messaging policy is

completely irrelevant, as there is no way of ever persuading consumers to try provider A; we shall

return to this observation when we consider the designer’s general problem in §6.

Let us now consider how the designer achieves first best in Proposition 2, assuming this is

permitted by the initial state x1. In general, there exist multiple messaging policies that achieve

first best, but all such policies share the common feature of being deliberately less-than-fully

informative: under an optimal policy, messages are structured so as to withhold at least some

information regarding past consumer experiences. To illustrate the manner in which this is done,

we first use Lemma 1 to anchor our discussion in the subclass of messaging policies referred to

as ICRPs (see Definition 1); we then present an example that allows for more general messaging

policies and highlights their common features.

By Lemma 1, if first best is achievable in the decentralized system, the recommendation policy

g(xt) =

{
A if GA(xt)>GB

B if GA(xt)≤GB,
(3)

must be an ICRP. Interestingly, this implies that consumers (in all periods and in all possible system

states) rationally follow recommendations for the provider of highest Gittins index, even though

such recommendations are not necessarily compatible with maximization of their own individual

expected reward. To understand why this is the case, let us consider the mechanics underlying

policy (3).

Recall that each consumer has knowledge of (i) the initial state, x1; (ii) the period of her arrival,

t; and (iii) the designer’s messaging policy, in this case (3). Upon visiting the platform, she receives

a message in the form of a recommendation for A or B. Taking the period-t consumer’s perspective,

consider first the event that a recommendation to use provider B is received. From Lemma 4, it

follows that if the designer finds it system-optimal to recommend service B in any given period, then

it must be the case that provider B is also optimal for the individual receiving this recommendation;

to see this, note that the designer’s “tolerance” for failed service outcomes with provider A is
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higher (in any period) than that of the individual consumer – thus, a B recommendation is clearly

incentive-compatible (IC).

Now, consider the event that a recommendation to use provider A is received. Lemma 4 suggests

that this recommendation nests two possible types of states. The first type corresponds to cases

where sAt ≥ s̄(t): here, service A yields a higher expected reward for the individual consumer (i.e.,

provider A would have been chosen by the consumer even under perfect state information). By

contrast, the second type corresponds to cases where s∗(t)≤ sAt < s̄(t): here, it is provider B that

yields the highest expected reward for the individual consumer. By merging these two types of

states into a single message – the A recommendation – the designer is able to elicit choice A from

the consumer, even if the true underlying state is of the second type: upon being recommended

provider A, the consumer updates her belief over the underlying state and concludes that, in

expectation, she is better off by heeding the platform’s advice. In the proof of Proposition 2, we

demonstrate that the latter statement holds for customers in all periods; that is, the dynamics of

the system are “well-behaved,” in the sense that states can always be merged into messages that

allow the designer to elicit system-optimal choices from the consumers.

By employing a messaging policy which is deliberately imprecise regarding the underlying sys-

tem state, the designer is able to induce system-optimal behavior in the event that the realized

state of the system results in misalignment between his and the individual consumer’s preferences.

Returning to the more general class of messaging policies and following this logic, in any optimal

policy, states of the system where r(xt,A)≤ rB and GA(xAt )>GB hold simultaneously (i.e., states

in which the designer and the consumers’ preferences are misaligned) must correspond to the same

message as some other state/states x′t for which r(x′t,A) > rB and GA(xA
′

t ) > GB (i.e., states in

which the designer and the consumers’ preferences are aligned). As a consequence, optimal policies

are characterized by a “many-to-few” structure, and some loss of accuracy in information-provision

to the consumers is necessary.

The trade-off between the accuracy of information provision to consumers and the platform’s

payoff is an issue of practical relevance. To illustrate that this trade-off need not be a steep one, and

to fix the ideas discussed in this section, we revisit Example 1 but now assume that the designer

employs an optimal messaging policy. We pick up the process in period t = 4 and consider the

decision process of the period-4 consumer under alternative messaging policies. There are four

possible states in period t= 4, each of which occurs with probability 0.25 (see Table 1). In three

of these four states, the designer and the consumers prefer the same action; that is, under perfect

state information consumers would make the system-optimal choice of provider. By contrast, in the

fourth state listed in Table 1 consumers would not make the system-optimal choice under perfect

information.



Papanastasiou, Bimpikis and Savva 17

Table 1

xA4 = (sA4 , f
A
4 ) P (xA4 ) consumer prefers designer prefers

(4,1) 0.25 A (rA = 0.8) A (GA = 0.87)
(3,2) 0.25 A (rA = 0.6) A (GA = 0.71)
(2,3) 0.25 A (rA = 0.4) A (GA = 0.52)
(1,4) 0.25 B (rA = 0.2) A (GA = 0.30)

How can the designer structure his messaging policy so as to induce the period-4 consumer

to choose provider A when the realized state of the world is xA4 = (1,4)? Below are three dis-

tinct examples of optimal messaging policies (i.e., mappings between possible states of the system

and messages disclosed to the period-4 consumer), ordered from left to right in increasing order

of accuracy of information provided to the period-4 consumer.15 The messages m1,m2,m3 ∈M

are arbitrary, since the mapping from states to messages (i.e., the designer’s policy) is common

knowledge.

(4,1)

(3,2)

(2,3)

(1,4)

m1

(4,1)
}
m1

(3,2)

(2,3)

(1,4)

m2

(4,1)
}
m1

(3,2)
}
m2

(2,3)

(1,4)

}
m3

From left to right, the designer may choose to map all, three, or only two possible period-4 states

to the same message. Note, however, than in any optimal messaging policy, state (1,4) cannot

correspond to a unique message. To see how such imprecisions in the designer’s policy restore first-

best, consider, for example, the third messaging policy. If the consumer receives messages m1 or m2

when visiting the platform, then she has perfect state information and rationally chooses service

A, as indicated in Table 1. If she receives message m3, she conducts the following calculation

E[r(x4,A) | g(x4) =m3] =
2

2 + 3
×P (x4 = (2,3) | g(x4) =m3) +

1

1 + 4
×P (x4 = (1,4) | g(x4) =m3)

= 0.4× 0.5 + 0.2× 0.5 = 0.3> 0.27 = rB,

and concludes that she should choose provider A, as desired by the designer. Since the consumer

receives message m3 both when the system state is (2,3) and when it is (1,4), provider A is chosen

in both scenarios: the possibility of the state being (2,3) entices the consumer to choose A even

when the state is actually (1,4). Finally, we note that any optimal messaging policy consists of a

“garble” of FI and is, therefore, less informative than FI in the Blackwell sense (see Marschak and

Miyasawa 1968).

15 By comparison, note that a FI policy would generate a unique message for each state of the system.
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5.4. Comments

Commitment vs. Cheap Talk How important is the designer’s a priori commitment to a

messaging policy? In the simplified setting of this section, it is straightforward to show that the

equilibrium induced by an optimal messaging policy can also be supported in a dynamic cheap-talk

game. To see why, suppose that the designer does not commit to a policy a priori, and engages in

a cheap-talk game with the period-t consumer. If the consumer receives a recommendation to use

service B, then it must be the case that r(xt,A)≤ rB, since the only deviation-proof policy for the

designer is to recommend service B only if GA(xAt )≤GB, which in turn implies r(xt,A)≤ rB. If

the consumer receives a recommendation to use service A, then this means that (i) all preceding

consumers have used provider A, and (ii) GA(xAt )>GB; the consumer’s rational response in this

case is to follow the designer’s recommendation (this follows in a similar manner as that used to

explain IC of A recommendations above). While the commitment assumption can be relaxed in the

analysis of this section without any loss for the platform, the same cannot be said in the designer’s

general problem which we consider in §6.

Information vs. Payments Apart from strategic information provision, an alternative

approach to persuade consumers to engage in exploration is to offer monetary exploration subsi-

dies. (In practice, such subsidies may be implemented through provider-specific discounts, reward

points, etc.) In the case where subsidies are used, we may consider π− γκ as the designer’s objec-

tive (see also §7.2), where π is the expected sum of the consumers’ discounted rewards, κ is the

expected sum of discounted subsidies paid to the consumers, and γ is a nonnegative constant.

If γ = 0, then subsidies are costless for the designer, and first best can be trivially achieved by

paying each consumer the amount necessary for her to choose the Gittins-optimal provider. The

more interesting case is when γ > 0 (see also Frazier et al. 2014). Here, notice that the use of

subsidies to induce exploration automatically rules out first best, since any κ> 0 results in a payoff

π−γκ≤ π∗−γκ< π∗, where π∗ denotes first best. It follows that in any case where strategic infor-

mation provision alone is capable of restoring first best (e.g., as in Proposition 2), this approach is

superior to that of using monetary subsidies. In cases where first best cannot be achieved through

information provision alone, it may be optimal for the designer to employ monetary subsidies;

however, as we demonstrate in §7.2, even when the use of monetary subsidies is optimal, strategic

information obfuscation can only benefit the designer.

6. General Case

We now consider the case where the quality of both providers is ex ante unknown. Throughout

the remaining analysis we assume, without loss of generality, that r(x1,A)≥ r(x1,B); that is, the

ex ante (weakly) preferable provider for the consumer is A. We begin by stating a condition for

achieving first best in the general problem.
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Proposition 3. For initial system state x1, let g∗ be an optimal messaging policy. Then π(g∗) =

π∗ if and only if there exists an ICRP which recommends service B whenever GB(xt)>GA(xt).

Proposition 3 suggests that IC of recommendations for the ex ante less preferable (for the consumer)

provider in all periods is a necessary and sufficient condition for achieving first best payoff. When

the quality of provider B is known with certainty, this reduces to the simple condition on the

initial system state x1 described in Proposition 2. By contrast, when both providers are of ex

ante unknown quality, a simple inspection of the initial state will not suffice: even if the initial

system conditions are “favorable” for the designer (i.e., r(x1,A)≥ r(x1,B) and GA(x1)≥GB(x1)),

first-best may not be feasible owing to the dynamics of the learning process; the following example

demonstrates.

Example 2. Suppose that the prior belief over provider A’s quality is Beta(10,2), the prior

belief over provider B’s quality is Beta(2,2), and δ = 0.99. Thus, r(x1,A) = 0.83> 0.5 = r(x1,B)

and GA(x1) = 0.92> 0.78 =GB(x1); that is, the initial state of the system is “favorable.” Further-

more, note that provider A remains the system-optimal choice in periods t∈ [1,4] with probability

one (i.e., irrespective of the service outcomes in periods t∈ [1,3]). By contrast, in period t= 5, there

is a strictly positive probability that the system-optimal provider is B (i.e., if all trials undertaken

with provider A in periods t∈ [1,4] fail). However, no ICRP exists which recommends provider B

with positive probability in period t= 5; to see this, note that the consumer’s expected reward is

maximized by choosing provider A in period t = 5, irrespective of provider A’s outcome history

(i.e., r(x5,A)> r(x5,B) for all possible x5). Therefore, as Proposition 3 suggests, first best cannot

be achieved.

Thus, Proposition 3 allows us to test, in forward-induction fashion, whether first best is achiev-

able, by checking IC of B recommendations. For most initial states x1, this test reveals that first

best cannot be achieved (see Appendix C for an exception). Nevertheless, as we demonstrate in the

remainder of our analysis, a policy that discloses strategically-obfuscated information still results

in a significant payoff improvement with respect to FI.

6.1. Optimal ICRPs

Infeasibility of first best implies that Gittins-based recommendations are not IC in the general

problem, so that the designer can no longer rely on the Gittins index theorem to construct an

optimal ICRP. Here, we provide a characterization of the designer’s optimal policy in the general

problem.16

16 The authors thank an anonymous referee for comments on this section.
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By Lemma 1, the designer in our model seeks to find the best possible ICRP, that is, to choose

optimally the probabilities qxt that define the recommendations received by the period-t consumer

in each possible system state

g(xt) =

{
A w.p. qxt
B w.p. 1− qxt ,

while at the same time ensuring that any recommendation received by the period-t consumer is

IC. The designer’s general problem may be framed as the following Constrained Markov Decision

Process (CMDP; see Altman (1999)),

max
g(xt)

E

[∑
t∈T

δt−1r(xt, g(xt))

]
s.t. Ext [r(xt,A) | g(xt) =A]≥Ext [r(xt,B) | g(xt) =A], ∀t∈ T,

s.t. Ext [r(xt,B) | g(xt) =B]≥Ext [r(xt,A) | g(xt) =B], ∀t∈ T, (4)

where the constraints state that any recommendation that is generated by policy g in period

t is found to be IC (and is therefore followed) by the period-t consumer. The presence of the

IC constraints introduces both direct and indirect complications. The direct complication is that

recommendations generated by the designer’s policy in all states that could occur in period t must

now be viewed jointly, since such recommendations are coupled by the need to satisfy the period-t

consumer’s IC constraints. The indirect complication is that the designer’s choice of policy up

to period t affects the beliefs of customers that visit the platform in periods t+ 1 onwards, and

therefore (through the IC constraints) also affects the feasible region of recommendations in future

periods.

To facilitate exposition of the result that follows, we introduce the following additional notation.

Let Xt be the set of states that are reachable from the initial state x1 (under some policy) in period

t, so that the total state space is X =
⋃
t∈T Xt. Denote by Pkiz the transition probability from state

k to state z when provider i is used (note that these probabilities have been specified in §4), and

let ∆a denote the Dirac delta function concentrated at a.17

Proposition 4. The optimal ICRP is given by

q∗k =
ρ(k,A)∑
i∈S ρ(k, i)

,

17 The result of Proposition 4 extends readily to the case of |S|= n providers (in this case, an ICRP consists of n
possible recommendations, and each recommendation must satisfy n− 1 IC constraints per period), as well as to
alternative platform objective functions (by replacing r(k, i) with suitable reward functions).
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where ρ(k, i) solve

max
ρ

∑
k∈X

∑
i∈S

ρ(k, i)r(k, i)

s.t.
∑
k∈Xt

ρ(k,B)[r(k,B)− r(k,A)]≥ 0, ∀t∈ T,∑
k∈X

∑
i∈S

ρ(k, i) (∆z(k)− δPkiz) = ∆x1(z), ∀z ∈X,

ρ(k, i)≥ 0, ∀k ∈X, i∈ S. (5)

A few comments on the solution technique of Proposition 4 are warranted. To solve the designer’s

problem, the objective and constraints of the CMDP (4) are first expressed as sums of the immediate

expected reward in each state-action pair, r(k, i), multiplied by the time-discounted “occupancy” of

the pair, ρ(k, i). Then, the LP (5) optimizes over the admissible set of occupancy measures, which

is described by the LP’s constraints. In particular, in the context of our problem, any admissible

occupancy measure must be consistent with (i) the consumers’ incentives (this is captured by the

period-specific inequality constraints, which ensure that each period-t consumer finds the recom-

mendation she receives IC), and (ii) the system’s dynamics (this is captured by the state-specific

equality constraints, which ensure that the occupancy of each state is consistent with the system’s

state-transition probabilities).18 Finally, once the optimal occupancy measure has been identified,

the probabilities q∗k are chosen in a manner that induces this measure.

To gain insight into the structure of optimal policies, it is instructive to consider a finite-horizon

version of the problem, consisting of TF time periods. In this case, applying Theorem 3.8 of Altman

(1999) reveals that the optimal ICRP uses randomized recommendations in at most TF states. As

the horizon length TF increases, the state space grows exponentially, but the number of states in

which randomization occurs grows only linearly (for instance, the number of possible states for

TF = 20 is of the order 1012, but randomization occurs in at most 20 states). This suggests that

optimal policies consist mainly of deterministic recommendations, relying extensively on the use

of the state-merging structure identified in §5.3 to “persuade” consumers to experiment.

6.2. The Value of Information Obfuscation

The “curse of dimensionality” renders the optimal solution to the designer’s general problem com-

putationally intractable. However, by combining the structural insights yielded by our analysis

(i.e., state-merging, limited randomizations, sufficiency of two-message policies), it is possible to

generate tractable and effective heuristic solutions. In this section, we consider one such heuristic

18 Note that the solution to LP (5) can also be used to retrieve the period-t consumer’s belief over the system state

upon entry to the platform; specifically, this belief is given by P (xt = z) =
∑
i∈S ρ(z,i)∑

k∈Xt
∑
i∈S ρ(k,i)

.
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and use it to establish that the value of information obfuscation is significant, even if this is imple-

mented in a simple and intuitive manner (we note that the payoff under any heuristic serves as a

lower bound on the payoff of the optimal policy described in Proposition 4).

Consider the following Gittins-based heuristic, which combines our preceding analysis with the

centralized solution to the designer’s problem to deliver IC recommendations. Let pxt denote the

probability that the state in period t is xt. The heuristic is initialized by choosing the starting state

x1 and proceeds by repeating two steps. First, it solves the period-t LP

max
0≤qxt≤1

∑
xt∈X

pxtqxt [GA(xt)−GB(xt)]

s.t.
∑
xt∈X

pxt(1− qxt)[r(xt,B)− r(xt,A)]≥ 0 (6)

and stores the solution qxt (this is the designer’s recommendation policy for period t); second, the

period-t solution is used along with the probabilities pxt to calculate the probabilities pxt+1
. The

two steps are repeated until a pre-specified period t=K is reached, after which a full-information

policy is employed (or, equivalently, an ICRP which always recommends the provider of highest

expected reward). Essentially, in each of the first K periods of the horizon, the heuristic employs

state-merging to deliver recommendations that maximize the expected Gittins index, subject to

the recommendations being IC. A more detailed discussion of the heuristic and its properties is

provided in Appendix A, along with a theoretical bound on its payoff with respect to first best

(see Proposition 7).

To evaluate the benefits of information obfuscation (in the sense of the Gittins-based heuris-

tic), we conduct the numerical experiments presented in Table 2. The table focuses on the added

“learning value” of obfuscation in comparison to that of a FI policy. Specifically, we first calculate

the difference (π∗−πNI), i.e., the difference between the platform’s payoff when no social learning

takes place (πNI) and when social learning takes place optimally (π∗). This difference is an upper

bound on the learning value that can be achieved by the designer in the decentralized system

through information-provision. We then calculate the percentage of this value achieved under FI

(∆πFI) and under the Gittins-based heuristic (∆π(ĝ)).

The upper half of the table pertains to initial states which are “unfavorable” for the designer, in

the sense that there is an ex ante misalignment between the provider of highest expected reward

and the provider of highest Gittins index; by contrast, the lower part of the table pertains to

“favourable” initial states. Across all instances we consider, the heuristic performs significantly

better than full information. Furthermore, we observe that the benefit is highest when the initial

state is unfavorable: in such cases, under full information the consumers tend to stick with the ex

ante preferable provider and only rarely engage in experimentation with the alternative option.



Papanastasiou, Bimpikis and Savva 23

Next, notice that in each of the four subgroups of initial states, the ex ante expected reward of the

two providers is maintained constant, but the variance of one of the two changes; this allows us to

capture different environments in terms of the potential benefits of exploration. Here, intuitively,

we observe that the benefits of information obfuscation are especially pronounced when the quality

of the ex ante preferable provider is relatively certain while the quality of the alternative provider

is relatively uncertain.

x1 = {(aA1 , bA1 ), (aB1 , b
B
1 )} r(x1,A) std(x1,A) r(x1,B) std(x1,B) ∆πFI ∆π(ĝ)

{(6,3), (1,1)} 0.67 0.15 0.5 0.29 47.2% 96.3%
{(12,6), (1,1)} 0.67 0.11 0.5 0.29 18.6% 85.0%
{(18,9), (1,1)} 0.67 0.09 0.5 0.29 6.0% 83.7%
{(15,6), (2,1)} 0.71 0.10 0.67 0.24 58.1% 97.8%
{(15,6), (4,2)} 0.71 0.10 0.67 0.18 66.0% 90.7%
{(15,6), (6,3)} 0.71 0.10 0.67 0.15 71.7% 93.0%

{(1,1), (3,6)} 0.5 0.29 0.33 0.15 87.6% 100%
{(1,1), (6,12)} 0.5 0.29 0.33 0.11 81.0% 95.9%
{(1,1), (9,18)} 0.5 0.29 0.33 0.09 80.0% 100%
{(1,1), (3,6)} 0.5 0.29 0.33 0.15 85.4% 94.6%
{(3,3), (3,6)} 0.5 0.19 0.33 0.15 85.9% 94.6%
{(6,6), (3,6)} 0.5 0.14 0.33 0.15 51.1% 96.2%

Table 2 Proportion of first-best learning value captured in the decentralized system by FI, defined as

∆πFI = πFI−πNI
π∗−πNI , and by the Gittins-based heuristic ĝ with K = 50, defined as ∆π(ĝ) = π(ĝ)−πNI

π∗−πNI (where π∗, πFI ,

πNI and π(ĝ) denote expected platform payoff under first best, FI, NI and the Gittins-based heuristic,

respectively). r(x1, i) and std(x1, i) denote, respectively, the expectation and standard deviation of the reward of

provider i∈ {A,B} at the initial state x1. Parameter values: δ= 0.99. Results were obtained using simulation and

the Bayesian approach described in Caro and Gallien (2007); raw data provided in Appendix D.

7. Extensions
7.1. Imperfect Knowledge of Consumers’ Arrival Times

In our main analysis, we have assumed that consumers know the exact period of their arrival,

which implies that they know how many of their peers preceded them in seeking service. While

this assumption may appear to be restrictive, here we show that our approach is in fact a robust

one. In particular, the result that follows allows for consumers to hold arbitrary beliefs over their

arrival times.19

Proposition 5. Let g (g∗) denote an ICRP (the optimal ICRP) when consumers have perfect

knowledge of their arrival times. Then:

19 In order to avoid pathological cases, we impose the restriction that each consumer’s actual arrival time is consistent
with her belief; that is, it cannot be that the consumer arrives in a period where her belief assigns zero probability.
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(i) g remains an ICRP under any arbitrary belief held by consumers over their arrival times.

(ii) If v∗ is an optimal ICRP under a specific set of consumer beliefs, we have π(v∗)≥ π(g∗).

In the proof of Proposition 5, we demonstrate that if a recommendation policy is IC for the case

where consumers have precise knowledge of their arrival times, then the same recommendation

policy is IC when consumers hold arbitrary (and possibly heterogeneous) beliefs. This result is

particularly appealing, because it suggests that the designer can achieve an expected payoff equal

to π(g∗) irrespective of what consumers’ beliefs may be and irrespective of whether these beliefs

are observable to the designer. When consumers do not have precise knowledge of their arrival

time, this allows the designer to merge states not only within each period, but also across periods

– effectively, the constraints faced by the designer in delivering IC recommendations become less

stringent. The extent to which this may help the designer achieve higher payoff will depend on the

specific nature of consumers’ beliefs. In any case, a robust and effective approach for the designer

is to design his policy assuming that consumers are perfectly informed about their arrival times.

7.2. Combining Information with Monetary Subsidies

In this section, we extend our analysis to allow for cases where the platform designer, in order

to elicit exploration from the self-interested consumers, can complement his information-provision

policy with monetary subsidies. Consistent with extant literature (e.g., Frazier et al. 2014), we

assume that the designer’s objective is to maximize π − γκ, where π is the expected sum of the

consumers’ discounted rewards, κ is the expected sum of discounted exploration subsidies paid to

the consumers, and γ is a nonnegative constant. The extended model can be viewed as a lagrangian

relaxation of a problem where the designer has a fixed budget allocated to exploration subsidies.

Moreover, the pure-information model of §6 can be retrieved by setting γ sufficiently large (i.e.,

so that payments are prohibitively costly), while when γ = 0 (i.e., so that payments are costless)

the designer can implement first best simply by paying each consumer the amount necessary for

her to choose the Gittins-optimal provider (i.e., the difference between the expected reward of her

preferred choice and that of the Gittins-optimal choice).

Under a full-information policy, the designer must evaluate in each system state whether the long-

run benefit of incentivizing the consumer to conduct exploration (through a monetary payment)

is higher than the instantaneous cost of doing so. The full-information problem has been studied

by Frazier et al. (2014), who provide a characterization of the gains that are achievable at a fixed

budget. Here, we consider the combination of information provision with subsidies, with a focus

on establishing whether information obfuscation remains beneficial when the provider can directly

incentivize exploration through subsidies.
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To answer this question, we consider “messaging-with-subsidies” policies where, apart from spec-

ifying a mapping from states to messages, the designer can choose for each message m∈M used in

period t an accompanying subsidy plan {κit(m)}i∈S, where the subsidy κit(m)≥ 0 can be claimed

by the consumer if she chooses to use provider i. In this case, the designer faces the same trade-off

as that in the full-information case described above, but with an additional layer of complexity: the

payments necessary to induce exploration in any system state now also depend on the designer’s

choice of messaging policy, because the compensation required by each consumer depends on what

she infers (regarding the providers’ qualities) from the message she receives. Thus, this problem

appears to be significantly more complex due to the multitude of possible combinations of payment

plans and state-to-message mappings. To facilitate exposition of the result that follows, we first

provide the following definition, which expands the notion of an ICRP to the case with subsidies.

Definition 2 (ICRSP: Incentive-Compatible Recommendation-with-Subsidies Policy).

A recommendation-with-subsidies policy is a messaging-with-subsidies policy defined as

v(xt) =

{
A,{κit(A)}i∈S w.p. qxt
B,{κit(B)}i∈S w.p. 1− qxt ,

(7)

where qxt ∈ [0,1] for all xt ∈ X, and κit(j) = 0 for all i, j ∈ S, i 6= j. A recommendation-with-

subsidies policy is said to be incentive-compatible if for all xt ∈X, each period-t consumer follows

the recommendation she receives.

Under an ICRSP, the designer recommends a single provider, but now this recommendation may

also be accompanied by a positive subsidy (conversely, the subsidies corresponding to providers

other than the one recommended are set to zero). The use of an ICRSP constitutes information

obfuscation, as each possible period-t state maps to one of two recommendations. We may now

present the following result, which establishes the dominance of ICRSPs in the model with subsidies.

Proposition 6. For any arbitrary messaging-with-subsidies policy v, there exists an ICRSP v′

which achieves a (weakly) higher expected platform payoff.

To establish Proposition 6, we show that for any arbitrary messaging-with-subsidies policy there

exists an ICRSP which replicates the same consumer actions in every system state, but at a

potentially lower total subsidy cost. More specifically, as we demonstrate in the proof of the

proposition, if there exists in the general policy v some message m which (in any period) induces

selection of provider i without requiring a monetary subsidy attached to that provider, then there

exists an ICRSP v′ which achieves the same actions but at a strictly lower total subsidy cost (thus

resulting in a strictly higher platform payoff). We present an example of this effect below.



26 Papanastasiou, Bimpikis and Savva

Example 3. Suppose that the prior belief over provider A’s quality is Beta(5,5) (i.e., ex ante

expected quality of 0.5) and that provider B has a known quality of rB = 0.53; thus, the ex ante

preferable provider for the consumers is B. Consider the minimum total subsidies required to induce

exploration of provider A in the first two periods under a FI policy versus under an ICRSP. In the

first period, for the customer to choose provider A, both policies must offer a minimum subsidy of

κA1 = pB − r(x1,A) = 0.53− 0.5 = 0.03 (i.e., assuming κB1 = 0). However, in the second-period:

(i) Under FI, the state x2 is disclosed to the period-2 consumer and a minimum subsidy κA2 (x2) =

max{pB − r(x2,A),0} must be offered in order for the consumer to choose provider A. If

the period-1 trial was successful (occurs w.p. 0.5), then κA2 = max{0.53− 0.55,0}= 0. If the

period-1 trial was unsuccessful (occurs w.p. 0.5), then κA2 = max{0.53−0.45,0}= 0.08. Thus,

the ex ante expected period-2 subsidy is E[κA2 (x2)] = 0.5× 0.08 = 0.04.

(ii) Under an ICRSP, the designer in period 2 recommends provider A irrespective of the period-1

outcome. For this recommendation to be incentive-compatible, it must be accompanied by a

subsidy of κA2 (A) = max{pB−E[r(x2,A)],0}= max{0.53− (0.5×0.55 + 0.5×0.45),0}= 0.03.

Thus, in the above example, the ICRSP achieves the same consumer actions in the first and second

periods as a FI-with-subsidies policy, but at a 25% lower subsidy cost.

8. Conclusion

This paper investigates how information provision can be used to regulate the process by which

information is generated in decentralized learning contexts. We conduct our analysis within a

decentralized multi-armed bandit framework that exhibits the well-known exploration-exploitation

trade-off. We demonstrate how, by disclosing information that is strategically obfuscated, a prin-

cipal interested in maximizing social surplus can succeed in “persuading” self-interested agents to

take socially-optimal actions. We have further demonstrated that the value of information obfus-

cation in decentralized learning can be significant, and that this value persists even when agents’

actions can be directly incentivized through monetary payments.

Similar misalignments in the objectives of the agents and the principal are inherent in many

settings (e.g., see §1), however, it is important to recognize that our model makes several sim-

plifications on dimensions which may influence information provision in specific contexts. Such

dimensions include, among others, more complex principal objectives, agent heterogeneity in pref-

erences and/or reporting propensity, behavioral biases in decision making, and external factors that

promote specific agent actions. While the aforementioned simplifications present potential avenues

for future work, we discuss below two further issues that are particularly intriguing.

The first is associated with variation of the quality of alternative options over time. For instance,

in the review platform setting, the quality of service providers is likely to change over time. Future
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work may focus on two relevant questions. First, if changes in quality are assumed to be exogenous

to the learning process, then how should the platform disclose information to its users? Here, one

may expect an optimal policy to include an element of “forgetting” relatively old (and therefore

possibly outdated) information.20 Second, if qualities are endogenous to the learning process (e.g.,

providers react to the content reported to the platform), then how does the principal’s information-

provision policy interact with the providers’ choice of quality? In this case, the platform must

consider not only its role in providing information to consumers, but also its role in affecting the

providers’ service quality.

The second interesting issue is that of competition. In the current paper we have assumed a

“monopolistic” platform. In a setting where multiple platforms are competing for user traffic,

how would the platforms structure their information-provision policies? Would platforms choose

to differentiate by employing policies of different informativeness? In the short-run, if a platform

elects to employ a full-information policy as opposed to a competitor’s strategic-information policy,

then we may expect it to attract a larger portion of the consumer population. However, the current

paper suggests that the full-information platform will generate qualitatively inferior content, and

may therefore suffer in the long run.

Appendix

A. The Gittins-Based Heuristic

In this section, we provide further details on the Gittins-based heuristic (6) described in §6.2.

Heuristic Design Note first that a period-by-period construction of a policy that constitutes an ICRP

is permitted by the structure of the constraints in problem (4). In particular, to ensure that a policy is an

ICRP, the constraints that the designer’s period-t recommendations must satisfy are fully specified by the

belief of the period-t customer; at the same time, the belief of the period-t+ 1 consumer follows readily from

the period-t belief and the period-t policy. In the heuristic, every period-t LP respects the IC constraints

of the period-t consumer (this is ensured by the single linear constraint in (6), which can be shown to be

equivalent to the two period-t constraints that appear in (4); e.g., see proof of Proposition 4), so that the

policy constructed is guaranteed to be an ICRP (i.e., feasible).

The heuristic operates on the basis of the state-merging property identified in §5 to maximize in each period

the expected Gittins index of the action taken by the period-t consumer. To see how this is achieved, define for

period t the sets ICt
i = {xt :Gi(xt)≥Gi′(xt), r(xt, i)≥ r(xt, i′)} and NCt

i = {xt :Gi(xt)>Gi′(xt), r(xt, i)<

r(xt, i
′)}, where i 6= i′ and i, i′ ∈ S. The sets ICt

i (NCt
i ) contain those states of the system in which the

provider of highest Gittins index would (would not) be preferred by the period-t consumer under full infor-

mation. The solution to each period-t LP merges states belonging to ICt
i with states belonging to NCt

i , with

the goal of eliciting Gittins-optimal actions in states where the consumers under full information would have

chosen a different action.

20 See Besbes et al. (2014) for related work in a setting with centralized decision making.
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Performance The performance of the heuristic can be evaluated by exploiting the observation that the

heuristic is equivalent to a suboptimal centralized policy in the MAB problem. Specifically, let U t be the set

of states at time t in which the heuristic policy is forced, with at least some probability, not to recommend

the provider of highest Gittins index. We may then state the following result which utilizes Glazebrook

(1982).

Proposition 7. For initial system state x1, let ĝ denote the Gittins-based heuristic policy and let pxt

denote state probabilities under policy ĝ. The following statements hold:

1. The difference between π∗ and π(ĝ) is bounded by

π∗−π(ĝ)≤
+∞∑
t=1

∑
xt∈Ut

δt−1pxt |GA(xt)−GB(xt) | .

2. Let g∗ be the optimal ICRP. If π(g∗) = π∗, then π(ĝ) = π∗.

The bound accumulates a penalty (equal to the Gittins-suboptimality of the recommended provider)

whenever the heuristic policy fails to recommend the provider of highest Gittins index. Since the heuristic

can only perform worse than the optimal policy described in Proposition 4, this bound also serves as a

lower bound on the payoff of the optimal ICRP described in Proposition 4 (we note that a limitation of this

bound is that it requires numerical calculations, e.g., simulation). The second point of the proposition shows

that if Gittins-based recommendations are IC everywhere, these recommendations are also chosen by the

Gittins-based heuristic.

Computation The inputs to the routine used to extract the Gittins-based ICRP in our computations are

(i) the initial system state x1, (ii) the designer’s discount factor δ, and (iii) a table of Gittins indices at the

designer’s discount factor. Computation of Gittins index tables is relatively straightforward (e.g., see Gittins

et al. (2011), pp.223-224), and need only be conducted once for each value of δ. For each period t, we solve LP

(6), store the solution, and then use the solution along with the current states xt and their probabilities pxt

to construct the set of possible states in period t+ 1 and calculate their probabilities pxt+1
. We observe that

using strategic IC recommendations beyond period 50 is only marginally beneficial in terms of system payoff

but computationally cumbersome. Thus, we set the initial number of period where the heuristic actively

obfuscates information to K = 50. After extracting the heuristic policy, we perform simulation analysis to

evaluate its performance (see §6.2).

B. Proofs

Supporting Results

The following lemma is used in subsequent proofs. For proof of this lemma, see, for example, Bellman (1956).

Lemma 5. Let g(a, b) denote the Gittins index of a Bernoulli reward process with current success probability

distributed as Beta(a, b), a, b ∈ Z+. The following properties hold: (i) g(a, b) < g(a + 1, b); (ii) g(a, b) >

g(a, b+ 1); (iii) g(a, b)< g(a+ 1, b− 1).
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Proof of Lemma 1 Given the designer’s policy and the choice-strategy of the preceding consumers, the

period-t consumer holds rational beliefs over the possible states of the system in period t. Upon receiving

message m, the consumer’s expected reward from choosing service i is given by

E[r(xt, i) | g(xt) =m] =
∑
j∈Xt

r(j, i)
P (g(xt) =m,xt = j)

P (g(xt) =m)
=
∑
j∈Xt

r(j, i)
P (g(xt) =m | xt = j)P (xt = j)∑

k∈Xt P (g(xt) =m | xt = k)P (xt = k)

=
∑
j∈Xt

r(j, i)
P (g(j) =m)P (xt = j)∑

k∈Xt P (g(k) =m)P (xt = k)
.

Conditional on receiving message m, it is optimal for the consumer to use service A or service B, or the

consumer is indifferent between the two providers. In the latter case, we assume that the consumer chooses

the designer’s preferred option. We will show, by construction, that for any arbitrary messaging policy there

exists an ICRP which induces equivalent system dynamics. For some messaging policy g, define the sets

MA
t = {m : m ∈M, period-t consumer chooses A} and MB

t = {m : m ∈M,period-t consumer chooses B}.
Now consider the recommendation policy g′, defined by

g′(xt) =

{
A w.p.

∑
m∈MA

t
P (g(xt) =m)

B w.p.
∑

m∈MB
t
P (g(xt) =m).

(8)

The recommendation policy g′ is, by design, incentive-compatible for the period-t consumer, since we have

simply replaced messages with recommendations of the service-choices that they induce. Since the above

recommendation policy results in (stochastically) identical consumer choices in any period t and in any state

of the system xt, the statement of the lemma follows.

Proof of Lemma 2 Note first that if GA(xt)≤GB for some t= k, then provider B is system-optimal in

period t= k. Furthermore, if B is used in period t= k then xAk+1 = xAk so that B remains system-optimal in all

periods t > k. The first part of the lemma follows readily. For the second part, note that A is system-optimal

in period t= 1. Furthermore, provider A remains system-optimal until the first period in which GA(xt)≤GB

holds, at which point it is system-optimal to switch to B and use B forever after. We have xt = {sAt , fAt },
where sAt + fAt = sA1 + fA1 + t− 1; that is, xt = {sAt , sA1 + fA1 + t− 1− sAt }. From property (iii) of Lemma 5, we

know that GA(xt) is increasing in sAt ; the threshold s∗(t) follows from this monotonicity.

Proof of Lemma 3 Under the FI regime, consumers have perfect state information. If rA(xt) ≤ rB for

some t= k, then provider B is chosen in period t= k. If B is chosen in period t= k then xAk+1 = xAk so that

B is chosen in all periods t > k. The first part of the lemma follows readily. For the second part, note that

A is chosen by the consumer in period t= 1. Furthermore, provider A is chosen by the consumers until the

first period in which rA(xt)≤ rB holds, at which point consumers switch to B and use B forever after. We

have xt = {sAt , fAt }, where sAt + fAt = sA1 + fA1 + t− 1; that is, xt = {sAt , sA1 + fA1 + t− 1− sAt }. Next, note that

r(xt,A) =
sAt

sAt +fAt
, is increasing in sAt ; the threshold s̄(t) follows from this monotonicity.

Proof of Lemma 4 By contradiction. Suppose that for some t we have s∗(t) > s̄(t); then, there exists

some xt with sAt ≥ s̄(t) and sAt < s∗(t). From Lemma 3, we have that consumers in state xt prefer to use

service A, which in particular implies rA(xt,A)> rB. From Lemma 2, we have that the designer in state xt

prefers to use provider B, which in particular implies that GA(xt)<GB. Lemmas 2 and 3 together imply

rA(xt,A)> rB =GB >GA(xt,A). However, note that from Gittins et al. (2011), pp.176-177, we know that

rA(xt,A)≤GA(xt,A), a contradiction. We conclude that s∗(t)≤ s̄(t) for all t∈ T .
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Proof of Proposition 1 We establish each side of the inequality in turn. Consider first πNI ≤ πFI . If

r(x1,A) ≤ rB, then under either policy regime consumers choose service B at all t ∈ T ; therefore, in this

case we have πNI = πFI . If r(x1,A) > rB then the first consumer chooses service A under both regimes.

Furthermore, under NI, consumers choose A in all t∈ T , because all choices are made based on x1. Under FI,

consumer choices are characterized by the stopping time τ̂ = inf{t : r(xt,A)≤ rB}, at which time consumers

switch to service B and use this service forever after (note that τ takes a finite value with positive probability

provided the prior distribution Beta(aA1 , b
A
1 ) has positive density across its support). Thus, policies NI

and FI are outcome-and-dynamics equivalent up to the stopping time τ̂ , and we may focus on differences

thereafter. Consider any realization of the stopping time τ̂ . In period t= τ̂ , the expected value-to-go under

NI is r(xτ̂ ,A)

1−δ , while the expected value-to-go under FI is rB
1−δ ≥

r(xτ̂ ,A)

1−δ . We conclude that πNI ≤ πFI .

Next, note that πFI ≤ π∗ follows simply from the fact that FI is a feasible policy and π∗ is first-best.

We describe the conditions that specify whether FI achieves first-best or not. If r(x1,A)≤ rB, two possible

cases arise: (i) GA(x1)≤GB, in which case consumers choose service B at all t∈ T , and this is also system-

optimal, so that πFI = π∗; (ii) GA(x1)>GB, in which case consumers choose service B at all t∈ T , but it is

system-optimal to use service A at least once in period t= 1, so that πFI < π∗. Next, if r(x1,A)> rB then

this implies GA(x1)>GB. Under FI, the consumer at t= 1 chooses service A, and this is also the system-

optimal choice. Furthermore, consumer choices under FI are characterized by τ̂ as described above, while

system-optimal choices are characterized by the stopping time τ∗ = inf{t :GA(xt)≤GB}. Note that GB = rB

and that GA(xt) is increasing in δ (Gittins et al. 2011, pp.32) with limδ→0GA(xt) = r(xt,A). Therefore, the

stopping rule GA(xt)≤GB = rB collapses to the stopping rule r(xt,A)≤ rB for sufficiently small δ. When

this is the case, we have πFI = π∗, while when there is discrepancy between τ∗ and τ̂ we have πFI <π∗.

Proof of Proposition 2 The proof of the proposition relies on the following lemma.

Lemma 6. Gittins-recommendations are IC in all periods t ∈ T if and only if a Gittins-recommendation

is IC in period t= 1.

Proof. The recommendation policy considered is

g(xt) =

{
A if GA(xt)>GB

B if GA(xt)≤GB,
(9)

If the above policy is IC in period t= 1, then this implies that either (i) GA(x1)>GB (designer prefers A in

period 1) and r(x1,A)> rB (consumer also prefers A in period 1), or (ii) GA(x1)≤GB (designer prefers B)

and r(x1,A)≤ rB (consumer also prefers B). Under case (ii), IC of policy (9) in all periods follows trivially

from the fact that each period is a repetition of the first (i.e., xt = x1 for all t).

Next, under case (i), note that policy (9) is IC in period t if both of the following hold simultaneously

E[r(xt,A)− rB | g(xt) =A]≥ 0, (10)

E[r(xt,A)− rB | g(xt) =B]≤ 0. (11)

The two conditions postulate that the period-t consumer is better off (in expectation) by following the

recommendation she receives, be it A (10) or B (11). Now, notice that condition (11) is guaranteed to hold
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by policy (9) since E[r(xt,A)− rB | g(xt) =B] =E[r(xt,A)− rB |GA(xt)≤GB]≤ 0, where we have first used

the structure of policy (9) and then the Gittins index property r(xt,A)≤GA(xt) and the fact that GB = rB.

We next claim that under case (i), if condition (11) holds, then condition (10) must also hold. To see this,

first note that upon entering the system and before receiving a message from the platform, the period-t

consumer’s expected reward from using service A is simply E[r(xt,A)] = r(x1,A) where xt are the possible

system states in period t. Furthermore, under policy (9) (as is true under any recommendation policy),

r(x1,A)− rB =E[r(xt,A)− rB]

=E[r(xt,A)− rB | g(xt) =A]P (g(xt) =A) +E[r(xt,A)− rB | g(xt) =B]P (g(xt) =B). (12)

In the above expression, under case (i) we have r(x1,A)− rB > 0 so that the left-hand side is positive. If

expression (11) holds, then the second term of the right-hand-side expression is non-positive. Therefore,

the first term of the right-hand side must be positive, which in particular implies that (10) is satisfied. We

conclude that if (9) is IC in period t= 1, then it is IC in all subsequent periods. �

The first two cases listed in the proposition follow from Lemma 6, since in these cases the Gittins recom-

mendation policy (3) is IC in period t= 1. Next, since r(x1,A)≤GA(x1) for any x1, the only remaining case

not covered in the proof of Lemma 6 is case (iii) of Proposition 2, namely, r(x1,A)≤ rB and GA(x1)>GB.

To prove that in this case π(g∗)<π∗, it suffices to point out that the first-best policy would use provider A

in period t= 1, but that provider A is never chosen in period t= 1 by the consumers in the decentralized

system, under any messaging policy.

Proof of Proposition 3 Consider an arbitrary recommendation policy

g(xt) =

{
A w.p. qxt
B w.p. 1− qxt ,

(13)

where qxt ∈ [0,1] for all xt ∈X. Policy (13) is IC in period t if both of the following hold simultaneously

E[r(xt,A)− r(xt,B) | g(xt) =A]≥ 0, (14)

E[r(xt,A)− r(xt,B) | g(xt) =B]≤ 0. (15)

Under policy g and for initial state x1, let Xt be the set of possible states in period t. Next, note that in any

period t, before the consumer receives a recommendation, we have E[r(xt, i)] = r(x1, i). Furthermore, recall

that r(x1,A)− r(x1,B)≥ 0 by assumption. In any state xt ∈Xt, the consumer receives either an A or a B

recommendation, the probability of which is specified by qxt and 1− qxt respectively. We have

r(x1,A)− r(x1,B) =E[r(xt,A)− r(xt,B)] =E[r(xt,A)− r(xt,B) | g(xt) =A]P (g(xt) =A)

+E[r(xt,A)− r(xt,B) | g(xt) =B]P (g(xt) =B). (16)

If a B recommendation is IC under policy (13), then (15) holds and the second term of (16) is non-positive.

It follows that the first term of (16) is non-negative (because r(x1,A)− r(x1,B) ≥ 0), so that (14) holds;

thus IC of a B recommendation in period t ensures IC of an A recommendation. To complete the proof, note

that an ICRP achieves first-best if and only if it recommends (deterministically) in any state xt the provider

of highest Gittins index. From the above discussion it follows that this necessary and sufficient condition

is equivalent to the existence of an ICRP which recommends provider B in period t in any state in which

provider B has the highest Gittins index.
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Proof of Proposition 4 We frame the problem as a constrained MDP and employ a Linear Programming

solution approach (see Altman (1999), Chapter II). We wish to choose policy g to maximize

R(x1, g) :=E

[∑
t∈T

δt−1r(xt, g(xt))

]
,

Define f(x1, g;k, y) :=
∑

t∈T δ
t−1P (xt = k, g(xt) = y) = δt−1P (xt = k, g(xt) = y) (the last equality follows

because state k can only be visited once), so that the objective can be expressed as

R(x1, g) =
∑
k∈X

∑
y∈S

f(x1, g;k, y)r(k, y).

The above objective must be maximized subject to the consumers’ IC constraints. Specifically, for each t∈ T ,

the chosen policy must satisfy the conditions

E [r(xt,A)− r(xt,B) | g(xt) =A]≥ 0,

E [r(xt,B)− r(xt,A) | g(xt) =B]≥ 0.

Regarding these period-t constraints, note first that using the proof of Proposition 3 (see (16) and discussion

that follows it) the first constraint is redundant, so that we need only consider the second constraint (i.e.,

the constraint corresponding to recommendations for the ex ante less favorable option from the consumers’

perspective). Next, note that the second constraint can be written as

E[r(xt,B)− r(xt,A) | g(xt) =B] =
∑
k∈Xt

[r(k,B)− r(k,A)]
P (xt = k, g(xt) =B)

P (g(xt) =B)
≥ 0,

which is equivalent to the constraint

∑
k∈Xt

f(x1, g;k,B) [r(k,B)− r(k,A)]≥ 0.

Thus we have expressed both the objective and the constraints of the problem in terms of the “occupation

measure” f(x1, g). To find the optimal recommendation policy, we first optimize over the set of occupation

measures by solving the following linear program

max
ρ

∑
k∈X

∑
i∈S

ρ(k, i)r(k, i)

s.t.
∑
k∈Xt

ρ(k,B)[r(k,B)− r(k,A)]≥ 0, ∀t∈ T,∑
k∈X

∑
i∈S

ρ(k, i) (∆z(k)− δPkiz) = ∆x1(z), ∀z ∈X,

ρ(k, i)≥ 0, ∀k ∈X, i∈ S.

Note that the last two sets of constraints ensure that ρ(·, ·) is a probability measure over state-action pairs.

We then use the solution to the above LP to derive the optimal recommendation policy (i.e., the policy

which induces the optimal occupation measure); this is given by q∗k = ρ(k,A)∑
i∈S ρ(k,i)

.
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Proof of Proposition 5 Suppose that the designer employs a recommendation policy g which is an ICRP

when consumers have precise knowledge of the period of their arrival. We will first show that g remains an

ICRP under any arbitrary belief held by each individual consumer regarding his arrival time (that is, we do

not exclude the possibility of consumers holding heterogeneous beliefs regarding their arrival time). IC of g

when consumers have precise knowledge of their arrival time implies that

E[r(xt,m) | g(xt) =m,t]≥E[r(xt,m
′) | g(xt) =m,t] (17)

for all m,m′ ∈ {A,B}, xt ∈X and t ∈ T . Now consider the perspective of some customer j who enters the

system when the (unobservable) system state is xt, receives a recommendation g(xt) = m and holds some

arbitrary belief regarding the time period of his arrival; let this belief be described by P (t= v) =: pv ≥ 0 with∑
v∈T pv = 1. To see that consumer j finds the recommendation g(xt) =m IC for m∈ {A,B}, note that

E[r(xt,m) | g(xt) =m] =
∑
v∈T

pvE[r(xt,m) | g(xt) =m,t= v]≥
∑
v∈T

pvE[r(xt,m
′) | g(xt) =m,t= v]

=E[r(xt,m
′) | g(xt) =m].

Thus, any g which is an ICRP when consumers have precise knowledge of their arrival time remains an

ICRP when consumers have arbitrary (and possibly heterogeneous) beliefs. (Note here that the designer’s

recommendation may result in the consumer updating his belief regarding his arrival time, in which case the

above argument continues to apply under the consumer’s updated arrival-time belief.) Among all possible

precise-knowledge ICRPs, g∗ maximizes expected platform payoff. Under any arbitrary consumer beliefs,

the designer can always implement the ICRP g∗ and achieve π(g∗), while he may be able to do better by

implementing a policy v∗ which depends on the specific beliefs held by the consumers; hence, π(v∗)≥ π(g∗).

Proof of Proposition 6 Consider an arbitrary messaging-with-subsidies policy v where each message

m∈M in period t is accompanied by a subsidy plan {κit(m)}i∈S, with κit(m)≥ 0, S = {A,B}. Under policy v,

define the sets Zit = {m :m∈M, period-t consumer chooses provider i} for i∈ S. In particular, this implies

E[r(xt, i) | g(xt) =m] +κit(m)≥E[r(xt, j) | g(xt) =m] +κjt(m)

κit(m)−κjt(m)≥E[r(xt, j)− r(xt, i) | g(xt) =m]

for all xt ∈X, m ∈ Zit , j ∈ S. Notice that under policy v, the designer only incurs the subsidy cost κit(m)

when message m ∈ Zit is disclosed to the consumer (because i is the consumer’s chosen provider). Now,

consider an alternative policy v̂, which uses the same state-to-message mapping as v, but accompanies each

message m∈Zit with the subsidy plan {κit(m) = max{E[r(xt, j)− r(xt, i) | g(xt) =m],0}, κjt(m) = 0}. Notice

that under v̂, messages m∈Zit still induce action i but at the lowest possible subsidy expenditure. Therefore,

policy v̂ uses the same messages and induces the same actions as v, but at a weakly lower subsidy cost

(resulting in a weakly higher platform payoff). Note that the total expected period-t subsidy incurred under

policy v̂ from messages m∈Zit is

κ̄it =
∑
m∈Zit

P (g(xt) =m) max{E[r(xt, j)− r(xt, i) | g(xt) =m],0}
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=
∑
m∈Zit

max{P (g(xt) =m)E[r(xt, j)− r(xt, i) | g(xt) =m],0}.

We will now construct an ICRSP which induces the same actions as v̂ in period t, but at a weakly lower total

expected period-t subsidy. Consider an ICRSP v′, which takes from policy v̂ each message m∈Zit along with

its corresponding subsidy plan {κit(m),0} (as described above), and replaces it with the recommendation i

and a subsidy plan {κit(i),0}. For the recommendation i to be incentive compatible, it must be accompanied

by a minimum subsidy of κit(i) = max{E[r(xt, j)− r(xt, i) | g(xt) = i],0}. This means that under v′, the total

expected period-t subsidy from i recommendations is

κ̄i
′

t = P (g(xt) = i) max{E[r(xt, j)− r(xt, i) | g(xt) = i],0}

=

∑
m∈Zit

P (g(xt) =m)

max

{∑
m∈Zit

P (g(xt) =m)E[r(xt, j)− r(xt, i) | g(xt) =m]∑
ν∈Zit

P (g(xt) = ν)
,0

}

= max

∑
m∈Zit

P (g(xt) =m)E[r(xt, j)− r(xt, i) | g(xt) =m],0


To complete the proof, notice that κ̄it ≥ κ̄i

′

t , which implies that policy v′ replicates the actions of policy v̂, but

at a weakly lower total subsidy cost (resulting in a weakly higher platform payoff). Furthermore, it follows

by inspection that the inequality is strict provided the quantity E[r(xt, j)− r(xt, i) | g(xt) =m] is negative

for at least some m ∈ Zit (e.g., this is the case when under the general policy v or under the dominating

policy v̂, there exists some m∈Zit for which κit(m) = 0).

Proof of Proposition 7 We prove the two points of the proposition in turn.

Proof of first point. For a simple family of alternative bandit processes, let π∗ denote the expected sum

of discounted rewards under the optimal full-control policy (i.e., the Gittins policy), and let πZ denote

the expected sum of discounted rewards under some alternative full-control policy Z. Glazebrook (1982)

establishes that the difference between these two quantities is bounded by

π∗−πZ ≤EZ

[
+∞∑
t=1

δt−1
(

max
i∈S

Gi(xt)−G(Z,xt)

)]
, (18)

where S is the set of bandit processes, xt is the state of the system at time t and G(Z,xt) is the Gittins

index of the bandit chosen in state xt by policy Z (note that EZ denotes expectation taken over realizations

of xt under policy Z).

In our decentralized model, the designer employs the Gittins-based heuristic in order to influence con-

sumers’ choices of service provider. According to this heuristic, the designer recommends the service of

highest Gittins index whenever possible, taking into account the consumers’ IC constraints. Note that, by

design, the recommendations generated by the heuristic are guaranteed to be IC and are therefore followed

by the consumer; as a result, the designer’s recommendation policy may be viewed as a full-control, but

nevertheless, suboptimal MAB policy. Let the sets U t be defined as in the main text. Viewing equilibrium

consumer choices as a suboptimal full-control policy, the designer uses the service of highest Gittins index

with probability one in all states except those belonging to the sets U t, t∈ T . Thus, the contribution to the

right-hand side of (18) of states xt ∈Xt \ U t, t ∈ T , is zero. Whenever the system is in states xt ∈ U t the



Papanastasiou, Bimpikis and Savva 35

designer uses (recommends) the suboptimal provider with strictly positive probability, let this probability

be qxt , and in this case the right-hand side of (18) incurs a penalty equal to |GA(xt)−GB(xt) |. Thus the

expected period-t penalty is pxtqxt |GA(xt)−GB(xt) | for xt ∈U t. Summing up across periods we have

π∗−π(ĝ)≤
+∞∑
t=1

∑
xt∈Ut

δt−1pxtqxt |GA(xt)−GB(xt) |≤
+∞∑
t=1

∑
xt∈Ut

δt−1pxt |GA(xt)−GB(xt) | .

Proof of the second point. Note that if there exists a policy g∗ such that π(g∗) = π∗ then, by Lemma

1, this implies that a recommendation policy which recommends in every period the provider of highest

Gittins index is an ICRP. Next, note that the period-t objective function used in our heuristic along with

the structure of the resulting period-t LP in (6) ensures that the policy extracted by the heuristic is precisely

the ICRP which recommends the provider of highest Gittins index in all states (since this policy does not

violate the consumers’ IC constraints and maximizes the objective function of the period-t LP).

C. Identical Prior Beliefs

We present an example where first best is feasible in the decentralized system. In this example the prior belief

over the quality of the two providers is identical. We state the following result as a corollary of Proposition

3 without proof.

Corollary 1. Suppose xA1 = xB1 . Then there exists a messaging policy g∗ such that π(g∗) = π∗.

Note that when xA1 = xB1 , a full-control policy is indifferent between using service A or B at t = 1, and

thereafter uses the service with highest Gittins index. To see how the designer can match this policy in the

decentralized system, consider the following ICRP. At time t= 1, the designer randomizes and recommends

either service with probability one half; in periods t≥ 2, the designer recommends the service with highest

Gittins index. Incentive-compatibility for all customers under this policy is satisfied as follows: since the

period-1 customer is indifferent between services, she follows the designer’s recommendatioin irrespective

of what this is. To the period-2 consumer, the past is perfectly symmetric, since the designer could have

recommended, and observed an outcome from, any one of the two services in the first period (i.e., for any

possible state j = {xAj , xBj } ∈X2 there exists an equiprobable state k = {xAk = xBj , x
B
k = xAj }). As a result,

any recommendation that the designer makes in the second period is IC for the period-2 consumer, and the

same logic applies to all consumers thereafter.



36 Papanastasiou, Bimpikis and Savva

D. Figures

x1 = {(aA1 , bA1 ), (aB1 , b
B
1 )} π∗ πFI π(ĝ) πNI

{(6,3), (1,1)} 71.895 (0.11) 69.137 (0.10) 71.702 (0.11) 66.667 (0.00)
{(12,6), (1,1)} 71.442 (0.09) 67.558 (0.08) 70.725 (0.09) 66.667 (0.00)
{(18,9), (1,1)} 71.179 (0.09) 66.936 (0.07) 70.443 (0.08) 66.667 (0.00)
{(15,6), (2,1)} 78.152 (0.09) 75.336 (0.07) 78.006 (0.08) 71.428 (0.00)
{(15,6), (4,2)} 75.889 (0.07) 74.371 (0.07) 75.472 (0.07) 71.428 (0.00)
{(15,6), (6,3)} 74.859 (0.07) 73.890 (0.06) 74.619 (0.07) 71.428 (0.00)

{(1,1), (3,6)} 55.428 (0.10) 54.535 (0.10) 55.427 (0.10) 50.000 (0.00)
{(1,1), (6,12)} 55.042 (0.10) 54.009 (0.10) 55.042 (0.10) 50.000 (0.00)
{(1,1), (9,18)} 54.835 (0.10) 53.710 (0.10) 54.833 (0.10) 50.000 (0.00)
{(1,1), (3,6)} 55.616 (0.11) 54.795 (0.11) 55.312 (0.11) 50.000 (0.00)
{(3,3), (3,6)} 52.393 (0.08) 52.055 (0.08) 52.263 (0.08) 50.000 (0.00)
{(6,6), (3,6)} 51.227 (0.06) 50.627 (0.06) 51.180 (0.06) 50.000 (0.00)

Table 3 Simulated payoffs of the alternative policies for different initial states x1 (numbers in parentheses

denote standard errors): (i) first best (full control), π∗; (ii) full information, πFI ; (iii) Gittins-based heuristic with

K = 50 (see Appendix A), π(ĝ); (iv) no information, πNI . Parameter values: δ= 0.99.
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