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Problem Definition: We study a service setting where the provider may have advance information about

customers’ future service needs and may initiate service for such customers proactively if they are flexible

with respect to the timing of service delivery.

Academic / Practical Relevance: Information about future customer service needs is becoming increas-

ingly available due to better system integration coupled with advanced analytics and big-data methods. We

contribute to the literature by presenting a systematic analysis of proactive service as a tool that can be

used to better match service supply with demand.

Methodology: To study this setting, we combine (i) queueing theory, and in particular a diffusion approx-

imation developed specifically for this problem, to quantify the impact of proactive service on customer

delays with (ii) game theory to investigate economic frictions in a system with proactive service.

Results: We find that proactive service reduces average delays, which we quantify with a closed-form

approximation. More specifically, we show that this reduction is increasing concave in the proportion of

customers who can be served proactively. Nevertheless, customers might not benefit from proactive service

due to economic frictions; in equilibrium more customers will join the system and fewer will be willing to be

flexible compared to social optimum. This is due to a positive externality leading to free-riding behavior –

customers who agree to be served proactively reduce waiting time for everyone else including those customers

who do not agree to be served proactively.

Managerial Implications: Our results suggest that proactive service may have a large operational benefit,

but caution that it may fail to fulfil its potential due to customer self-interested behavior.
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1. Introduction

In many service settings (e.g., healthcare), demand is highly variable but capacity is relatively

fixed over short periods of time, leading to delays for customers. To reduce such delays, service

providers often implement mechanisms that aim to modulate customer demand. These include

providing delay information to discourage customers from joining the system when congestion

is high (Armony et al. 2009, Jouini et al. 2011, Ibrahim et al. 2016, Cui et al. 2014), offering

customers the option to wait off-line or receive a call back (Kostami and Ward 2009, Armony and

Maglaras 2004a,b), or offering customers priority if they arrive during pre-allotted times (De Lange
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et al. 2013). In this paper, we investigate an alternative demand-modulation mechanism, proactive

customer service, where the provider exploits information about customers’ future service needs to

proactively initiate service when there is idle server capacity.

Proactive service may find application in any a number of service systems. For example, this

work was motivated by a healthcare setting, induction of labor – a procedure where the process of

delivering a baby is started artificially (induced) through the use of pharmaceuticals in a hospital

ward. In this setting, the schedule of pre-planned and elective patients provided a list of customers

with future service needs that the hospital could serve proactively (see Appendix C for more details

and a numerical illustration of this setting). Even in cases without a schedule, information on future

customers may become available from other sources such as predictive models. For example, Jerath

et al. (2015) develop a method to predict which customers are likely to contact a health insurance

call center based on claims data. The authors go on to suggest that a potential application would

be to make “advance outgoing calls to customers who have a high probability of calling,” in other

words, proactive customer service.

The first contribution of this paper is to formulate a model that captures the benefits associated

with proactive service and to develop novel approximations that quantify the improvement in

system performance. The model is based on a Markovian queueing system with two queues in

tandem. Arrivals to the first queue, which we call the “orbit,” represent virtual arrivals, or to be

more exact, arrival of information about customers’ future service needs that the provider may

choose to fulfill proactively. Because these customers are willing to receive service at a moment

chosen by the provider, we find it convenient to label them as “flexible.” We assume the provider

has minimal information about such flexible customers, having knowledge only of who requires

service in the future but not when they would arrive. If a customer in orbit has not been served

proactively, after a random amount of time they will transition to the second queue, which we

label as the “service” queue. The service queue also experiences direct arrivals by customers who

are not flexible, or equivalently, for whom the service provider does not have advance information

about their service needs. Customers at the service queue are served in a first-come, first-served

fashion (irrespective of whether they arrived directly or through orbit) by a single server. Naturally,

proactive service only takes place if the server is idle (i.e., the service queue is empty) and there

are customers in orbit.

Using this queueing model, we show that proactive service reduces service queue congestion in

the first-order stochastic sense – proactive service exploits periods of idle capacity to bring forward

arrivals who would have otherwise occurred at some point in the future. By doing so, proactive

service smooths demand and, as a result, reduces delays for all customers, including those who are

not flexible. Using a path-wise coupling argument, we show useful monotonicity results – the greater
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the proportion of flexible customers and the earlier the provider knows about their service needs

the lower the average congestion and delay in the service queue. Finally, we develop a diffusion

approximation that allows us to derive closed-form expressions for the average steady-state waiting

times. The approximation suggests that the reduction in delay associated with proactive service

displays decreasing marginal returns in the proportion of flexible customers.

While the operational benefits associated with proactive service may be substantial, realizing

them depends critically on customer behavior. On one hand, customers may refuse to be flexible,

especially if there is an inconvenience cost associated with flexibility. On the other hand, the

presence of proactive service, which reduces waiting times, may encourage customers to over-join

the system compared to profit maximizing (or social optimal), thus eroding any of the associated

benefits. Furthermore, the benefit of proactive service for each individual customer will depend

on what other customers do, i.e., it is an equilibrium outcome. Therefore, to understand whether

proactive service will indeed be beneficial requires a game-theoretic analysis.

The second contribution of this paper is to develop such a game-theoretic model to analyze

customer behavior. To do so, we augment the standard “to queue or not to queue” dilemma (Hassin

and Haviv 2003) with the additional option to join the queueing system but be flexible. The game

theoretic analysis identifies two economic frictions. First, customers will under-adopt proactive

service compared to the profit maximizing (or social) optimum. This result is driven by a positive

externality which gives rise to free-riding behavior: a customer who agrees to be flexible will reduce

the expected waiting time of everyone else but this is a benefit that she does not take into account

when making her own decision. In fact, we find instances where this economic friction can be

extreme in the sense that a profit-maximizing provider (or a central planner) would have wanted

all of the customers to be flexible, but in equilibrium, no customer chooses to be so. Second, we

find that given the option to be served proactively, customers will over-join the system compared

to both the profit maximizing (or social optimal) joining rate, as well as compared to a system

without proactive service. This is due to the well-known negative congestion-based externalities

(e.g., Naor 1969) that proactive service exacerbates, i.e., for a given level of arrivals, proactive

service reduces waiting times and, as a result, more customers would want to join compared to

the case without proactive service. Interestingly, we find some surprising interactions between the

positive and negative externalities. For example, an increase in the cost per unit of waiting time

may lead to more customers joining the system. This is because the higher cost of waiting in the

queue induces more customers to be flexible, which reduces waiting times, which in turn induces

more customers to join the system.

We conclude the paper by presenting two extensions of the queueing model described above. The

first covers the multiserver case and shows that the basic intuition and approximations developed for
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the single-server case continue to hold in the multiserver case with minor modifications. The second

extension examines the case where the information about future customer needs is imperfect. In this

case, some of the customers served proactively did not require service. These “errors” could occur

if customers may have their service need resolved through alternative channels (e.g., spontaneous

labor), or because of errors in information systems or predictive models in determining customers

with future service needs. We show that the diffusion-limit approximation we developed for the

case without errors can be adapted to derive closed-form approximations of system performance

in the presence of errors. Using this approximation, we derive conditions under which proactive

service reduces waiting times despite errors, and show that for some model parameters, the system

can handle more errors as system utilization increases. This seems counter-intuitive at first because

in a more heavily utilized system one would expect errors to increase delays more than in a less

utilized system. However, this can be explained by the fact that reduction in delays gained through

proactive service grows as utilization increases.

Sketches of all proofs are presented in the Appendix of this paper. In the electronic compan-

ion (EC) we present detailed proofs, additional numerical/simulation analysis, and a numeri-

cal/simulation study with parameters calibrated to the induction of labor setting which motivated

this work. This study suggests that proactive service can reduce average delays by up to 28% in this

setting. Nevertheless, our analysis also suggests that the hospital should proceed carefully before

implementing proactive service as economic frictions may lead to suboptimal voluntary adoption

of the service.

2. Literature Review

The analysis of proactive service in this paper contributes to three streams of queueing literature

which are connected by the objective of better matching service supply and demand. The first

stream examines interventions that modulate service supply in response to an exogenous demand

process. The second stream focuses on interventions that seek to actively manage endogenous

demand by taking into account the economic incentives of strategic customers. The third stream

builds on the first two by incorporating future demand information.

The first stream of literature considers supply-side interventions, e.g,. optimizing the number

of servers, in response to exogenous changes in demand. The bulk of this literature is developed

for call centers (see Gans et al. 2003, Aksin et al. 2007 for overviews) and has focused on topics

ranging from long-term workforce-management planning (Gans and Zhou 2002), to medium-term

shift staffing (Whitt 2006), down to short-term call routing policies (Gans and Zhou 2007), as well

as combinations of short and medium-term solutions (Gurvich et al. 2010). Our work fits with the

short-term strategies but, unlike the above-mentioned work, we assume that both system capacity
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and the routing policy are fixed. One supply-side strategy that is closely related to proactive

customer service is for idle servers to work on auxiliary tasks, such as emails in call centers (see,

e.g., Gans and Zhou 2003 and Legros et al. 2015). In the case of proactive service, future customers

can be thought of as the auxiliary tasks, however, this substantially changes the dynamics of the

system by smoothing the demand process.

The second stream considers demand-side interventions that aim to influence strategic customers’

(endogenous) decisions. See Hassin and Haviv (2003) and Hassin (2016) for a comprehensive review

of the economics of queues and strategic customer decision-making. One important intervention is

the use of pricing to control the overall level of demand. What makes pricing particularly impor-

tant in service systems is a key observation, first made by Naor (1969), that utility-maximizing

customers tend to over-utilize queueing systems compared to the socially optimal level. This is

due to customers imposing a negative externality on each other in the form of delays, and as a

consequence, the service provider can increase welfare by charging customers a toll for joining the

system. This finding persists in multiple variants, e.g., when the queue is unobservable (Edelson

and Hilderbrand 1975), and when customers are heterogenous or have multiple classes (Littlechild

1974, Mendelson and Whang 1990). Naturally, the negative externality and over-joining persists in

the presence of proactive service. However, in this setting we also find a rare instance of a positive

externality, where customers who agree to be flexible reduce the waiting time of everyone else.1

Beyond pricing, two other common demand-side interventions are delay announcements and

multiple service priorities. Delay announcements encourage balking (Allon and Bassamboo 2011,

Armony et al. 2009, Ibrahim et al. 2016, Jouini et al. 2011) or retrials (Cui et al. 2014), especially

when the system is congested. Multiple service priorities encourage some customers to wait in low-

priority queues (usually offline), thus reducing the waiting time of high priority customers (Engel

and Hassin 2017, Armony and Maglaras 2004a,b, Kostami and Ward 2009). Our work is closer

to the latter as one may think of customers who may be served proactively as arriving to a “low

priority” queue. However, in contrast to the extant work, customers in this “low priority” queue

may transition to the service system at any time, thus complicating the system dynamics.

The third stream of literature to which our work is related focuses on the setting where the

provider has information about the future. The benefits of future (or advance) demand information

on production and inventory systems (often modelled using queues) has been recognized by many

1 We note that positive externalities are relatively rare in the literature of queueing games (Hassin 2016, §1.8). Three
notable exceptions are: i) Engel and Hassin (2017), where customers that choose to join a low-priority queue reduce
delays for customers that join the high-priority queue; ii) Nageswaran and Scheller-Wolf (2016), where allowing one
class of customers to wait in multiple queues may, under some conditions, reduce waiting time for customers who
are only able to wait in a single queue; iii) Hassin and Roet-Green (2011), where customers that pay to inspect the
queue before making the decision to join or balk reduce waiting time for customers who do not inspect.
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(e.g., Gallego and Özer 2001, Özer and Wei 2004, Papier and Thonemann 2010). More relevant is

the work that considers customers who may accept product delivery early, i.e., are flexible to the

timing of product delivery (Karaesmen et al. 2004, Wang and Toktay 2008). The main difference

between this stream of work and ours is that production and inventory systems largely focus

on different performance measures (e.g., cost of production, inventory cost, or stock-out costs as

opposed to waiting times), and largely treat demand as exogenous. The study of future information

in the context of service as opposed to inventory systems is more limited and has focused mainly

on demand-side interventions in the form of admission control (e.g, Spencer et al. 2014, Xu 2015,

Xu and Chan 2016). As far as we are aware, the only other work that studies proactive service

is Zhang (2014). This work was motivated by computing applications (e.g., cache pre-loading or

command pre-fetching) and differs from ours in a number of dimensions. We present a more detailed

comparison once we introduce our model in §3.3.

3. Operational Analysis: Single-server Queueing Model

In this section, we present and analyze the proactive service system assuming there is a single

server. The analysis has two goals: (i) to show that proactive service improves system performance,

and (ii) to provide closed-form approximations that quantify the impact of proactive service on

time-average measures of system performance.

3.1. Queueing Model

We assume that demand arrives to the system following a Poisson process with rate λ, and that

there exists two types of customers who require service, “flexible” and “inflexible.” The service

times for both types of customers are assumed to be i.i.d. and exponential with parameter µ; note

we assume λ < µ throughout for stability. Inflexible customers make up a proportion (1− p) of

total demand and arrive to the service queue according to a Poisson process with rate (1− p)λ.

Upon arrival they immediately begin service if the server is free or join the queue, which operates

in a first-in, first-out manner. For flexible customers, we assume the service provider becomes

aware of the customer’s service need some time before they actually arrive to the service queue

and the provider has the option of serving them proactively at any time after becoming aware of

their service need. To capture this, we assume that flexible customers do not arrive directly to

the service queue, but instead arrive to a virtual queue, which we refer to as “orbit.” We assume

arrivals to orbit follow a Poisson process with rate pλ. While in orbit customers may be served

proactively if the server becomes idle, or, after a random period of time, which we assume to be

i.i.d. and exponential with parameter γ > 0, they depart for the service queue on their own. Once

at the service queue, flexible customers are served as any other customer who has arrived to the

service queue directly. Together, these assumptions imply that the system may be modeled as two
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Markovian queues in tandem linked by the proactive service mechanism, as depicted in Figure 1.

We note that some of our results hold for more general time-in-orbit and service-time distributions.

We indicate if this is the case when we state these results throughout the paper.

We will refer to the parameter p as the proportion of flexible customers or, interchangeably, as the

proportion of customers who have adopted proactive service. The average time flexible customers

spend in orbit before transiting to the service queue on their own (i.e., 1/γ) can be interpreted as

the information lead time for flexible customers – this is the average time in advance the provider

knows of a customer’s service need before the customer arrives to the service queue.

We denote the occupancy of the orbit and the service queues at time t > 0 with Nr(t) and Ns(t),

respectively. Similarly, we denote the steady-state average occupancy and steady-state distribution

of the queue length processes (where they exist) with N̄r, N̄s, and π= (πr, πs), respectively. Finally,

we define the steady-state average time for each customer type a ∈ {r, s}, spent in each queue

b ∈ {r, s}, with T̄ab, if this exists. For example, T̄rs denotes the average time flexible customers

spend in the service queue. We use the convention that a customer is assumed to be in the service

queue while in service.

Figure 1 Queueing model

pλ (1− p)λ

Orbit

S
erv

ice
q
u
eu
e

γ

µ

3.2. Impact of Proactive Service

In order to assess the impact of proactive service, we compare the system with proactive service to

a benchmark system without this capability, all other things being equal. In the benchmark case,

the whole system can be modeled as a Jackson network where orbit is an M/M/∞ queue, the

service queue is an M/M/1 queue, and all customers in orbit transition to the service queue. The

steady-state distribution of queue lengths and waiting times for this system can easily be found

in closed form (Kleinrock 1976, see §3.2 & §4.4). The steady-state distribution of total number

of customers in the service queue follows the geometric distribution with parameter 1− ρ where
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ρ := λ/µ< 1, and the steady-state distribution of the number of customers in orbit is Poisson with

parameter pλ/γ. To denote the time average performance measures associated with the benchmark

system, we append superscript B to all the terms defined above; for example, N̄B
s denotes the

expected number of customers in the service queue in steady state for the benchmark case.

Impact of proactive service on queue lengths. We begin with the following result.

Lemma 1. In steady state, the total number of customers in the system with proactive service

is equal in distribution to the number of customers in the service queue without proactive service,

that is, πr +πs
d
= πBs .

Lemma 1 shows that the steady-state distribution of the total number of customers in the system

with proactive service (that is the sum of customers in orbit and in the service queue) is equivalent

to the steady-state distribution of number of customers in the service queue when proactive service

is not possible. Interestingly, this implies that the distribution of the total number of customers in

the system does not depend on the proportion of customers that is flexible (i.e., p) or the average

information lead time (i.e., 1/γ). This result immediately implies that the average total occupancy

in the system with proactive service equals the average occupancy of the service queue in the

benchmark case (i.e., N̄r + N̄s = N̄B
s = ρ/(1−ρ)). Furthermore, the non-negativity of the number of

customers in orbit suggests that there is a stochastic ordering in the number of customers in the

service queue, a result we present in Proposition 1. Throughout, we use � to denote stochastic

ordering.

Proposition 1. newline

(i) The steady-state distribution of the occupancy of orbit in the system with proactive service is

stochastically dominated by that of the system without proactive service: πr � πBr .
(ii) The steady-state distribution of the occupancy of the service queue in the system with proactive

service is stochastically dominated by that of the system without proactive service: πs � πBs .

The first part of the proposition establishes that the orbit is less occupied (in a stochastic sense)

in the system with proactive service. This is not surprising. Since some customers are pulled from

orbit to be served proactively, the time they spend in orbit is reduced and thus orbit becomes less

congested compared to the system where proactive service is not possible. The second part of the

proposition shows that the service queue is also less congested (in a stochastic sense) in the system

with proactive service. Obviously, each part further implies that the time-average occupancy in

both orbit and the service queue is reduced, that is, N̄r ≤ N̄B
r and N̄s ≤ N̄B

s . We note here that

Lemma 1 and Proposition 1 can be extended to the cases when time in orbit and/or service times

are generally distributed.
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Impact of proactive service on wait times. Because customers and service providers gener-

ally consider delay times and not system occupancy as the key metric of system performance, we

now focus on the impact of proactive service on the expected time spent by each customer type

in different parts of the system in steady state. The main result is provided in Proposition 2 and

relies on Proposition 1 and the mean value approach (MVA) (Adan and Resing 2002, §7.6).

Proposition 2. Proactive service reduces delays for all customers in expectation:

(i) T̄rr ≤ T̄Brr, (ii) T̄ss ≤ T̄Bss, (iii) T̄rs ≤ T̄Brs,

but more so for those customers who can be served proactively:

(iv) T̄Brs− T̄rs ≥ T̄Bss − T̄ss.

The difference in expected time spent by flexible vs. inflexible customers in the service queue is

proportional to the expected time spent in orbit:

T̄ss− T̄rs =
µ−λ
µ

T̄rr ≥ 0. (1)

Proposition 2 shows that proactive service benefits both flexible and inflexible customers. The

fact that proactive service benefits flexible customers is not surprising – since some of them will be

served proactively and receive service without having to wait in the service queue at all, proactive

service will reduce the average waiting time for this class of customers. What is perhaps a little

more surprising is that proactive service reduces waiting times for inflexible customers as well. This

occurs because proactive service smooths demand by utilizing idle time to serve some customers

early, thus, it reduces the likelihood that customers will arrive to a congested service queue. This

reduction in congestion benefits all customers. However, Proposition 2 further implies that the

benefit of proactive service is greater for flexible than inflexible customers.

Impact of flexibility and information lead time. So far we have shown proactive service

decreases occupancy in both orbit and the service queue as well as average delays for all customers

when compared to a benchmark system without proactive service. Next, we establish a partial

answer to the question of how the performance of a system with proactive service changes as the

proportion of flexible customers and the information lead time change in Proposition 3.

Proposition 3. newline

(i) The steady-state distribution of number of customers in orbit (i.e., πr) is, in a stochastic

ordering sense, increasing in p and decreasing in γ.

(ii) The steady-state distribution of number of customers in the service queue (i.e., πs) is, in a

stochastic ordering sense, decreasing in p and increasing in γ.
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Table 1 Monotonic behavior of performance measures

N̄r N̄s T̄rr T̄rs T̄ss
γ ↓ ↑ ↓ ↑ ↑
p ↑ ↓ ? ? ↓

The arrow ↑ (↓) denotes that a given performance measure is increasing (decreasing) in p or γ.

(iii) The performance measures exhibit the monotonic behaviors summarized in Table 1.

Proposition 3 relies on a pathwise coupling argument to show part (i), specifically that there are

more customers in orbit (in a stochastic sense) in steady state if a larger proportion of customers

are flexible and fewer are in orbit if there is shorter information lead time. Combining this result

with Lemma 1 immediately implies the opposite impact on the service queue, which is given in

part (ii). Together these results imply the monotonicity of performance measures presented in part

(iii): that more information lead time (i.e., smaller γ) reduces time in the service queue for both

flexible and inflexible customers, and that a greater proportion of flexible customers (i.e., larger

p) leads to greater occupancy of orbit and lower occupancy of the service queue. We note that it

is not possible to use the MVA approach to derive monotonicity results for the waiting times of

flexible customers with respect to the proportion of flexible customers (p). Therefore, we defer this

to the next section where we develop diffusion limit approximations.2

3.3. Approximations Based on Diffusion Limits

In this section we present approximations based on diffusion limits for the performance measures

we discussed in the previous section. To provide some intuition, in the diffusion limit, the primitive

stochastic processes (e.g., arrivals and service completions) are replaced with appropriate limiting

versions that make the occupancy processes more amenable to analysis. This enables the study

of the macro-level behavior of the system over long periods of time and provides useful insights

that are helpful in developing closed-form approximations of steady-state behavior (Chen and Yao

2013).

To proceed we need to define some additional notation. We focus on the system with proactive

service (see Figure 1) and we define a sequence λn = µ− c√
n

for some c≥ 0 and a sequence of systems

indexed by n with these arrival rates. We still assume that arrivals are flexible with probability p

and the departure rate from the service queue is µ, but we let the departure rate of each customer

from orbit to the service queue be γn = γ√
n

. We further denote the number of customers in orbit

and the service queue at time t as Nn
r (t) and Nn

s (t), respectively.

2 We note that the simpler case, where customers never transition from orbit to the service queue on their own (i.e.,
γ = 0), has been recently studied in Engel and Hassin (2017). In this case, the orbit becomes a low priority queue
and the steady-state performance of the system can be obtained in closed form using exact analysis.
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Asymptotic analysis. Observe that as n increases, the total arrival rate (λn) approaches the

service rate (µ), which in turn implies that utilization goes to one. The part that is exploited by

a diffusion limit is that utilization, and hence occupancy, grows at a specific rate. Knowing that

the average number of customers in the nth system is λn/(µ−λn) is O(
√
n) means that dividing

through by
√
n prevents the limit of the total occupancy process from going to infinity (and hence

the limits of both the orbit and service queue occupancy processes as well). We further scale

time by replacing t by nt; this can be interpreted as the occupancy processes being observed over

longer lengths of time as utilization approaches one to capture the macro-level behavior of the

system. This leads to scaled occupancy processes N̂r(t) = Nnr (nt)/√n and N̂s(t) = Nns (nt)/√n. Defining

Nn
Q(t) = (Nn

r (t) +Nn
s (t)−1)+ to be the total number of customers in the system but not in service

at time t, then the asymptotic behavior of the scaled queue processes N̂n
Q(t) = NnQ(nt)/√n is given by

Theorem 1 below.

Theorem 1. Assume that N̂n
r (0) =

(
N̂n
Q(0)∧ pλn

γ

)
. For any finite T > 0,

sup
0≤t≤T

∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣→ 0 in probability as n→∞.

Theorem 1, which relies on the Functional Strong Law of Large Numbers and the Functional

Central Limit Theorem (Chen and Yao 2013), has a simple intuitive meaning. If the total scaled

number of customers in the system excluding those receiving service, N̂n
Q(t), is less than pλn/γ, then

there are almost no customers waiting to receive service in the service queue (more precisely it

is o (
√
n)); alternatively if the total is greater than pλn/γ, then the scaled number in orbit is pλn/γ

and (almost) all others are in the service queue. More generally, Theorem 1 implies that, given the

total number of customers in the limiting system, we now know how they are distributed between

the orbit and the service queue. In other words, the state space collapses.

The state-space collapse result is similar to Proposition 3.1 in Armony and Maglaras (2004b),

where the service provider offers customers call backs with a service guarantee. In their setting,

customers who agree to receive a call back are also placed in a holding system akin to orbit in our

setting. However, the driving mechanism and the proof techniques are significantly different. In our

setting the orbit queue functions similarly to a low-priority queue in that if there are customers

in the service queue, they are served exclusively; therefore, the service queue empties out faster

than orbit. In contrast, in the setting of Armony and Maglaras (2004b), customers in orbit are

sometimes given priority over the customers in the service queue (this happens when the number

of customers in orbit exceeds the limit pλn

γ
) otherwise the system would not meet the call-back

guarantee. The diffusion limit presented above is also related to those developed in the queueing

literature with abandonments; see Ward and Glynn (2003) and Borst et al. (2004). The main
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difference in our model is that customers do not abandon but transition from orbit to the service

queue. Therefore we need to use a different scaling to obtain meaningful limits approximations. For

instance, if we used the scaling in Theorem 1.1. in Ward and Glynn (2003), the service queue would

always be (asymptotically) empty, which does not lead to useful approximations. Hence we use an

alternative scaling where the transition rate from orbit to the service queue scales at a faster rate;

more specifically, it scales at the same rate as the utilization of the system. This scaling, however,

introduces a technical difficulty because the orbit occupancy can change rapidly even in the limit.

Nevertheless, we are able to prove that there is a state-space collapse in the limit, which leads to

the diffusion limit presented above.

Approximations. In order to develop closed-form approximations for system performance, the

next step is to apply the asymptotic result on the allocation of customers between the orbit and the

service queue to a finite system. Since the exact results show that the total number of customers

in the system is distributed geometrically, we apply the split of customers implied by Theorem

1 (assuming it holds for finite n). Computing the expected value of the occupancy of the service

queue yields the following approximations,

N̄s ≈ ρ+ ρb
pλ
γ +1c+1

(⌊pλ
γ

+ 1
⌋
− pλ

γ
+

ρ

1− ρ

)
≈ ρ

1− ρ
(

1− ρ
(

1− ρ pλγ
))

, (2)

where
⌊
x
⌋

denotes the floor function. The second approximation follows from
⌊
pλ
γ

⌋
≈ pλ

γ
. Utilizing

MVA (see also Proposition 2), the approximation given by (2) can be used to estimate all other

performance measures for queue lengths and wait times. By the PASTA property, the memory-

less property of service times, and (2), the average time spent in the service queue for inflexible

customers is

T̄ss =
N̄s + 1

µ
≈ 1

µ

(
ρ

1− ρ
(

1− ρ
(

1− ρ pλγ
))

+ 1

)
. (3)

By (2) and the implication of Lemma 1 that N̄s + N̄r = ρ
1−ρ , we have that,

N̄r =
ρ

1− ρ − N̄s ≈
ρ

1− ρρ
(

1− ρ pλγ
)
. (4)

By Little’s Law and (4), we have that the average time spent in orbit is

T̄rr =
N̄r

pλ
≈ 1

p(µ−λ)
ρ
(

1− ρ pλγ
)
, (5)

and finally by equation (1) and the approximations (5) and (3), we can find an approximation of

the average time spent in the service queue for flexible customers T̄rs.

The approximation given by equation (2) for the average number of customers in the service

queue has an intuitive appeal. It is equal to the average number of customers at the service queue
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in the absence of proactive service (ρ/(1−ρ)), multiplied by a constant,
(
1− ρ(1− ρpλ/γ)

)
≤ 1, that

represents the benefit of proactive service. As expected, this benefit disappears (i.e., the constant

goes to one) if there are no flexible customers (i.e., p = 0) or the average information lead time

goes to zero (i.e., 1/γ→ 0).

Furthermore, the approximations above allow us to derive additional properties of performance

measures that could not be derived using exact analysis (see Table 1). For instance, using equation

(2), we can show that the service queue occupancy decreases exponentially with p/γ, which implies

there are decreasing marginal benefits in the proportion of customers that are flexible and the

average information lead time. In addition, using equation (5) we can show that T̄rr is monotonic

decreasing in p. Also T̄rs is monotonic decreasing in p provided γ ≥ µ−λ and ρ> .2.

Verifying the accuracy of the approximations: Because the approximations presented

above are based on an asymptotic result, in this section we examine their accuracy in finite systems

where utilization is less than one. For instance, Figure 2 depicts the comparison of the diffusion

approximations and simulated average delays for the case when λ = 0.875, γ = .2, and µ = 1.

A full sensitivity analysis of the accuracy of the approximations is given in Appendix B.1.1. In

general, the approximations perform remarkably well for all values of p when utilization is high

(i.e., ρ∈ (.75,1)), and information lead time is not too large (i.e., (µ−λ)/γ ≤ 1). This is not surprising

given the asymptotic regime deployed to develop the approximations assumed that µ−λn→ 0 at

the same rate as γn→ 0.3

Figure 2 also serves to illustrate the substantial reduction in delays derived from proactive service.

For instance, if all customers are flexible (i.e., p= 1) the total average delay in the service queue

is reduced by 38.7% (from 8.0 to 4.90 time units). Even if only half of customers are flexible (i.e.,

p= 0.5), the average time in the service queue is reduced by 22.2% (from 8.0 to 6.23 time units).

This reduction in delays is achieved even though the average information lead time is relatively

short (only 62.5% of the expected delay in the benchmark case). In other words, relatively little

information lead time goes a long way when customers can be served proactively.

Remark 1 (When time in orbit is a constant). Although not essential for the rest of our

analysis, we compare the reduction in wait times achieved with proactive service when time in

orbit is exponentially distributed, to the case when time in orbit is deterministic. The latter case

is studied in Zhang (2014) and can be interpreted as a case when the provider possesses more

information about the customers’ future service needs compared to the former. The setting in Zhang

(2014) has two additional differences. First, it assumes that a customer does not have to be present

3 As the diffusion limit presented above fails when the information lead time increases (i.e., 1/γ→∞), not surprisingly,
the approximation does not collapse to the exact analysis presented in Engel and Hassin (2017) where the authors
assume that γ = 0. Therefore, the two results can be seen as applicable to different parameter regions.
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Figure 2 Customer delays in the proportion of flexible customers (p), where λ= .875, γ = .2, µ= 1.
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for service. Hence, the waiting time measure they consider does not include service time, only time

in queue. It is straightforward to modify their approach to include service time as well. This is

the approximation we present here. Second, Zhang (2014) assumes that inflexible customers have

preemptive priority over flexible customers. This assumption is essential for his analysis technique,

however, it is not realistic for service systems. Hence, we only compare our results to his when p= 1,

in which case preemptive priority does not matter because there are no inflexible customers. Let

w denote the time customers spent in orbit before they transition to the service queue. Under this

assumption, Zhang (2014) shows that the average amount of time customers spend in the service

queue (excluding time spend in service) when p= 1 is ¯̄T qss = ρ
µ−λe

−µ(1−ρ)w. Based on (2), with p= 1

and γ = 1/w, we arrive at the following approximation, T̄ qss = ρ
µ−λρ

λw. Let ∆(ρ) = ¯̄T qss/T̄
q
ss, then

we have ∆(ρ) = e−w
(
e
ρ

)ρw
. It can be shown that limρ→0 ∆(ρ) = 0, limρ→1 ∆(ρ) = 1, and that ∆ is

(strictly) increasing in ρ. Therefore, knowing exactly when customers would transition from the

orbit to the service queue helps further reduce average time spent in service queue. However, this

additional reduction in waiting time decreases as the system reaches heavy traffic.

4. Economic Analysis: Endogenous Decision-Making and Welfare

The queueing analysis thus far has shown the significant potential of proactive service to improve

operational performance. However, it assumes exogenous customer arrival rates to both orbit and

service queue. This is unlikely to be realistic in many service settings because it is customers who

choose to join the queue and/or to be flexible based on the costs and benefits of each option.
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Therefore, to understand the benefits of proactive service, we need to consider the decisions of

strategic customers in equilibrium.

To do so we build off a standard queueing game (e.g., Hassin and Haviv 2003) where, in addition

to the option of joining or not, customers need to also choose if they accept to be flexible. In such

a system, customer self-interested behavior generates two distinct economic frictions. The first has

to do with the customer joining decision – any customer who joins the system increases the waiting

time for everyone else. This is a negative externality customers do not take into account when

deciding to join the system, leading to customers over-utilizing the system compared to the social

(or profit maximizing) optimal (Naor 1969). The option to be flexible introduces a second friction.

Any customer that chooses to be flexible reduces the waiting time for everyone else. This is a

positive externality that customers do not take into account when deciding whether to be flexible

or not, leading to customers under-adopting proactive services. Moreover, as we show in the next

section, these two opposing externalities interact in non-trivial ways.

4.1. Customer Utility and Equilibrium Demand

To facilitate a game theoretic analysis, we assume that there exists a large population of potential

customers who are homogeneous, rational, and risk-neutral economic agents. We also assume that

customer waiting times are accurately approximated by the (smooth version of the) closed-form

diffusion approximations of §3.

Each customer has some small exogenous probability of requiring service such that, in aggregate,

customer service needs can be modelled by a Poisson process with rate Λ. Receiving service is

valued at v and each customer also has access to an outside service option whose value we normalize

to zero. Customers decide whether to join, and if they join whether to be flexible, by examining the

expected cost of these choices which we assume is common knowledge. More specifically, we assume

that real-time waiting time information is not available but customers have an accurate belief about

average waiting times; see Chapter 3 of Hassin and Haviv (2003) for an extensive review of the

theory and applications of unobservable queues. The expected costs have three sources. First, all

customers are averse to waiting at the service queue and incur a waiting-time cost ws ≥ 0 per unit

of time spent there (waiting or receiving service). Second, flexible customers need to be ready to

“answer the call” from the idle service provider at any time and therefore incur i) an opportunity

cost 0 ≤ wr ≤ ws per unit time spent in orbit that reflects any inconvenience associated with

“waiting” to commence service early; ii) a fixed inconvenience cost h≥ 0, which can be interpreted

as the cost of giving up autonomy/spontaneity in the timing of joining the queue. Third, customers

may need to pay prices cr ≥ 0 and cs ≥ 0 set by the provider for flexible and inflexible customers,

respectively. Given the assumptions, the expected utility of customers who choose to join but
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not to be flexible is v− cs −wsT̄ss, the expected utility of customers who join and are flexible is

v− cr−h−wrT̄rr−wsT̄rs, and the utility of customers who do not join is zero.

Customers choose to (1) not join, (2) join and be flexible, or (3) join and be inflexible, based on

the option with the greatest expected utility. For notational convenience, we let λ≤ Λ represent

the effective demand (i.e., arrival) rate to the system such that J = λ/Λ∈ [0,1] gives the proportion

of customers who join the system, and p∈ [0,1] represents the proportion of customers who choose

to be flexible conditional on joining. Because customers are homogeneous, we are interested in

symmetric Nash Equilibria where, given that all other customers play a mixed strategy represented

by (J, p) (i.e., join with probability J and are flexible with probability p), each customer’s best

response is to also play strategy (J, p). For the rest of the analysis we restrict our attention to λ

rather than J as there is a one-to-one correspondence between the two.

4.2. Unregulated Customer Equilibrium

To study the incentives introduced by proactive service, we examine the case where customers make

their own utility-maximizing decisions in an unregulated system, i.e., where cs = cr = 0. Under

mild assumptions, Proposition 4 establishes the existence and uniqueness of equilibrium as well as

comparative statics.

Proposition 4. If Λ
µ
≥ .75, v≥ 4ws

µ
and γ ≥ ws

v
, then:

i. There exists a unique symmetric Nash Equilibrium (pe, λe) for customer flexibility and joining

behavior.

ii. The equilibrium strategy is such that:

(a) The proportion of flexible customers p and the arrival rate λe are non-increasing in the

costs of flexibility h and wr.

(b) The proportion of flexible customers pe is non-increasing in customer valuation v, and the

arrival rate λe is non-decreasing in customer valuation v.

(c) The proportion of flexible customers pe is non-decreasing in the waiting-time cost ws, but

the arrival rate λe can be decreasing or increasing in the waiting-time cost ws. Specifically,

if all strategies are played with positive probability so that λe <Λ and pe ∈ (0,1), then the

arrival rate λe is increasing in the waiting-time cost ws, otherwise λe is decreasing in the

waiting-time cost ws.

The conditions under which this proposition holds also ensure that utilization is relatively high and

information lead time is relatively low, therefore ensuring that the diffusion approximations are a

good representation of the system performance. We prove Part i by construction, considering all

possible cases and proving uniqueness and existence though enumeration. The comparative statics

results in Part ii rely on the monotonicity of delays in both the arrival rate and the proportion
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of flexible customers, and are largely in line with intuition. Part iia shows that, as the costs of

flexibility (h,wr) increase, fewer customers agree to be flexible and fewer customers join, just as one

might expect. Part iib shows that, as customer valuation for service (v) increases, more customers

join, which is also as expected. More interestingly, Part iib also shows that, as customer valuation

(v) increases, a smaller proportion of those who join choose to be flexible, which suggests a non-

obvious interaction of externalities. Specifically, this happens because as congestion increases (i.e.,

more customers join due to their valuations (v) being higher) the value of free riding (i.e., the

value a customer gets when other customers choose to be flexible) also increases. As a result, the

proportion of customers who agree to be flexible becomes smaller. Perhaps even more surprising is

Part iic, which shows that, as the cost of time spent in the service queue (ws) increases, the arrival

rate may actually increase. The reason is that the increase in waiting-time cost (ws) induces more

customers to be flexible, which generates a positive externality (i.e., reduces average waiting time),

and in turn induces more customers to join. In this way one can clearly see the positive externality

associated with flexibility interacts with the negative externality associated with congestion.

4.3. Customer suboptimal behavior: Over-utilization and Free-Riding

Next, we seek to understand how customer decisions in an unregulated equilibrium compare to

those that a profit-maximizing service provider would want. The provider seeks to maximize the

revenue rate from prices paid by customers subject to customers’ equilibrium behavior,4 i.e.,

max
cr,cs≥0

λ(pcr + (1− p)cs) (6)

subject to: (p,λ) is an equilibrium.

Because customers are homogeneous, a profit maximizing provider will not find it optimal to set

prices such that customers are left with a positive surplus in equilibrium; if this was the case the

provider would be able to increase prices without impacting customer decisions (Hassin and Haviv

2003, §1.3). Therefore, the profit maximizer will set prices such that cs = v − wsT̄ss(pe, λe) and

cr = v−h−wrT̄rr(pe, λe)−wsT̄rs(pe, λe). Given this, the provider’s revenue can be rewritten as,

W (p,λ) = λ
[
p(v−h−wrT̄rr(p,λ)−wsT̄rs(p,λ)) + (1− p)(v−wsT̄ss(p,λ))

]
. (7)

An interesting observation is that the profit of the provider in this case is equal to the average wel-

fare rate of customers, an observation also made by (Hassin and Haviv 2003, §1.3). In other words,

4 We note that, since proactive service may require a one-off cost to implement and perhaps a variable cost to monitor
customer service needs, the provider will need to compare any increase in revenue to the implementation and running-
costs to determine whether or not to implement proactive service. However, since this is a straightforward comparison,
we do not model this explicitly and assume proactive service can be implemented at zero cost. We will therefore use
revenue and profit interchangeably.
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the profit maximizer would want customers to behave in exactly the same way as a benevolent

social planner (whose aim is to maximize welfare). The only difference is that the profit maximizer

would set the prices so as to extract all of the customer surplus, while the social planner, for whom

prices are an internal transfer, would be indifferent between any price. Therefore, to understand

whether customers’ autonomous joining decisions of §4.2 are suboptimal for the profit maximizer,

it would suffice to compare them to those of a benevolent social planner.

The existence of the optimal solution to the social planner’s problem is guaranteed by the fact

that the action space is compact and the objective function is continuous.5 We compare the socially

optimal customer actions with the equilibrium customer decisions of Proposition of §4.2 in the next

result.

Proposition 5. If Λ
µ
≥ .75, v ≥ 16ws

µ
, γ ≥

√
µws/v, then for any socially optimal/profit-

maximizing solution (pso, λso),

i. Customers over-utilize the system compared to the socially optimal/profit-maximizing solution,

(λso ≤ λe).
ii. Customers under-adopt proactive service compared to the socially optimal/profit-maximizing

solution, (pso ≥ pe). In particular, there exist thresholds of the flexibility cost h denoted by
¯
h

and h̄, where 0<
¯
h< h̄, such that if h≥

¯
h then pe = 0 and if h≤ h̄ then pso = 1. This implies

that if
¯
h ≤ h ≤ h̄ then pe = 0 and pso = 1, i.e., no customer would choose to be flexible in

equilibrium but the social planner (or profit maximizer) would designate all customers who join

to be flexible.

The conditions under which this proposition holds are a subset of the conditions of Proposition 4

and, as was the case there, they also ensure that the diffusion approximations are a good repre-

sentation of the system performance. Proposition 5 shows that customers will over-utilize a service

system with proactive service and under-adopt proactive service (the option to be flexible) com-

pared to the socially optimal or the profit-maximizing solution. Figure 3 illustrates this point by

showing the equilibrium strategy and the socially optimal/profit-maximizing strategy as a function

of the fixed cost of flexibility (h) for a specific example. As can be seen in Figure 3a, the under-

adoption of proactive service can be substantial in the sense that there exists a region (0.3<h< 1.4

in Figure 3a), where the central planner would have dictated that all customers who join be flexible

but in equilibrium flexibility is a strictly dominated strategy. Proposition 5 Part ii shows that such

a region is not specific to this example but always exists. In this region, customers would be better

off if they collectively chose to be flexible, but because customers are individually better off by

5 We note that we are unable to prove that the social planner’s objective W (p,λ) is concave. Nevertheless, in numerical
experiments we find the first order conditions are both necessary and sufficient.
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Figure 3 Comparison of Equilibrium Strategy and Socially Optimal: Λ = .95, γ = .25, µ= 1,ws = 1,wr = 0, v= 16.
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free-riding, no-one chooses to be flexible. Similarly, Figure 3b shows that customers over-utilize the

system in general, but when being flexible is optimal for at least some customers (i.e., h< 0.3), it

also exacerbates customer over-utilization through an increase in the equilibrium arrival rate.

The result of Proposition 5 suggests that, although the operational benefit from proactive service

could be substantial, realizing it will not necessarily take place automatically because of customer

self-interested behavior. As in the case where proactive service is not possible (e.g., Naor 1969),

the profit maximizer can overcome this problem by setting prices/tolls cr and cs, for flexible and

inflexible customers, respectively, that incentivize optimal joining behavior. Figure 4a depicts these

prices against the fixed cost of flexibility (h) for the same example as Figure 3.6 Similarly, Figure

4b shows the improvement in provider revenue against the fixed cost of flexibility h by showing the

ratio of the optimal revenue in the case with proactive service over the benchmark case without

proactive service.

What is important to note from Figure 4a is that, in different regions of the fixed cost of

flexibility (h), the price for flexible customers (cr) and inflexible customers (cs) play different roles

depending on the combination of economic frictions faced. For example, cr is lower than cs for all

cases where h is high enough such that not all customers would autonomously choose to be flexible

(0.3<h< 2.6). This must be the case to incentivize customers to be flexible despite their free-riding

6 We note that for some values of h there exist multiple prices that are optimal and revenue equivalent. For these cases
we show the lowest price. More specifically, when h< 1.4 (h> 2.6) any price cs (cr) greater than the one depicted in
the figure would also be optimal. Since no customer would choose to be inflexible in the case when h < 1.4 (flexible
in the case when h> 2.6), this would not make a difference to the revenue.
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Figure 4 Optimal Pricing and Welfare: Λ = .95, γ = .25, µ= 1,ws = 1,wr = 0, v= 16
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(b) Increase in Profit over Benchmark

0 0.5 1 1.5 2 2.5 3

1

1.05

1.1

1.15

Inconvenience cost (h)

W
el

fa
re

R
a
ti

o

Profit Ratio

incentives. Since the incentive to free-ride grows as h increases, so must the gap between cs and cr.

Furthermore, in the regions where at least some customers choose to be flexible (i.e., 0<h< 2.6) cr

is decreasing in h. This happens because, as the fixed cost of flexibility h increases, the toll that the

profit maximizer needs to impose to prevent customers from over-joining (while at the same time

extracting all rents) is lower. Similarly, in the regions where some (but not all) customers choose

to be inflexible (i.e., 1.3<h< 2.6) cs is also decreasing in h. This happens because, as h increases,

the provider will find it optimal to incentivize fewer customers to be flexible. Since fewer customers

are flexible, the waiting time of inflexible customers will increase and therefore the price that the

profit maximizer will need to impose to prevent over-joining (and extract all rents) will have to

decrease. Finally, what is important to take away from Figure 4b is first, that proactive service can

substantially increase the revenue (or welfare) in a system that offers proactive customer service

compared to one that does not, and second, that the lower the costs of flexibility for customers,

the more valuable proactive service.

5. Generalizations and Extensions of the Queueing Model

In this section we explore two extensions to the queueing analysis presented in the previous sections.

First, we examine a setting with more than one server. Second, we examine the case when future

information is imperfect, specifically the case that by serving customers proactively the provider

can make “errors” and serve customers who would not have been served in the absence of proactive

service. We find that key results, pertaining to the benefit of proactive service and the economic

incentives to adopt it, continue to hold under these extensions.
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5.1. Multiserver Setting

Due to the fact that queueing systems exhibit economies of scale, the results of the single-server

case cannot be taken for granted in the multiserver setting. To extend the analysis, we assume that

there are m> 1 identical servers who may serve customers proactively should the service queue

be empty. As we show below, the results of Lemma 1 and Proposition 1 extend directly, as do

parts (i) and (ii) of Proposition 3. Changes in the the mean value relations between performance

measures, however, complicate the analysis. Nevertheless, we are still able to show that proactive

service creates a benefit for both flexible and inflexible customers. Finally, the scalings used in

Theorem 1 are no longer helpful. However, alternative scalings enable us to establish a similar state-

space collapse from which we are able to suggest approximations for the performance measures of

interest. For the rest of this section we add the superscript m to the performance measure notation

to indicate the multiserver setting.

Direct extension of Lemma 1, Proposition 1, and Proposition 3 parts (i) and (ii):

The system without proactive service is still a Jackson network where orbit is an M/M/∞ and

the service queue is an M/M/m queue. As such, the stability condition is that λ <mµ. Lemma

1 applies in the multiserver setting as well; the proof is essentially identical. This leads to the

extension of Proposition 1. Lastly, the pathwise coupling argument used to prove Proposition 3

parts (i) and (ii) applies independently of the number of servers and hence extends directly as

well.

Modified results from the single-server case: The first change in the analysis from the

single-server case is that the MVA changes slightly. Specifically, by Lemma 1 we have that N̄m
r +

N̄m
s = N̄mB

s and, although Little’s Law and PASTA continue to apply, the expected time in system

for inflexible customers is more complicated than the single-server setting and equation (1) no

longer applies. However, because Proposition 1 is still valid in the case with multiple servers,

Proposition 2(i)–(iii) continues to hold; that is, the average delay in each queue is shorter in a

system with proactive service and that proactive service reduces service queue delays for inflexible

customers. While this result is not as detailed as the analysis in the single-server case, it does

demonstrate that proactive service benefits both flexible and inflexible customers.

The next step is to develop a diffusion approximation for the multiserver case. To do so, we start

from the notation used in §3.3, but in place of the scalings of Theorem 1, we use the standard

Halfin–Whitt multiserver scalings (Halfin and Whitt 1981). That is, we consider a sequence of

systems indexed by n and the arrival rate and the number of servers λn = nµ(1− β√
n

), mn = n,

respectively, and additionally we scale the orbit departure rate as γn =
√
nγ in the nth system.

Rescaling the orbit occupancy, service queue occupancy (excluding customers in service), and the
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total number of customers in the system (again excluding customers in service) as N̂n
r (t) = Nnr (t)√

n
,

N̂n
s (t) = Nns (t)−n√

n
, and N̂n

q (t) = N
(m)n
r (t)+Nns (t)−n√

n
, respectively, then we have the following result.

Theorem 2. If N̂n
r (0) =

(
N̂n
q (0)∧ pλn

γn

)
then

sup
0≤t≤T

∣∣∣∣N̂n
r (t)−

(
N̂n
q (t)∧ pλ

n

γn

)∣∣∣∣→ 0 in probability as n→∞.

Theorem 2 shows that under the updated scalings, the state-space collapse argument holds under

the Halfin–Whitt scaling as it did under the scaling of Theorem 1. This allows us to generalize

the intuition of the single-server setting regarding how customers are distributed between orbit

and the service queue. Using this intuition, and the fact that the total number of customers in the

(finite) system follows the same distribution as the occupancy of the standard M/M/m queue, we

can then apply the split of customers implied by Theorem 2 to compute the expected number of

customers in the orbit and the service queue. To compute the expected waiting times in different

parts of the system, we use this approximation and Little’s Law as follows. By a direct application

of Little’s Law we find the expected time in orbit for flexible customers T̄mrr . The expected time in

the system, denoted by T̄m, can be found using Little’s Law and the expected number of customers

in system. To find the average waiting time of inflexible customers, T̄mss , we use an MVA approach

similar to that in §5.2 of Adan and Resing (2002). To use this approach we need the probability

that there are more than m customers in the system, which can be calculated using the classic

Erlang-C formulas. Finally, the expected time flexible customers spend in the service queue, T̄rs,

is then determined from T̄m, T̄mss and T̄mrr . The accuracy of these approximations is similar to the

single-server case and is examined using simulation in the online Appendix B.1.2 and applied in

the example of induction of labor in Appendix C.

5.2. Imperfect Information about Future Service Needs

Up to this point we have assumed that the provider has perfect information about future customer

service needs. This assumption may not always be true. For example, in a healthcare setting, the

needs of patients who have a planned procedure may change, e.g., patients scheduled for induction

of labor may go into labor spontaneously and hence no longer require the procedure. In other

settings where the future information comes from predictive models, the models could make errors

in predicting customers with future service needs or, alternatively, customers who are predicted to

have a service need may manage to have it resolved though alternative channels, for example, the

firm’s website. By serving such customers proactively, the provider serves customers who, in the

absence of proactive service, would not have entered the service system, thus increasing utilization

and hence congestion and delays. The goal of this section is to examine the impact of imperfect

information on the performance of proactive service.
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To model imperfect information, we return to the single-server model depicted in Figure 1.

Incorporating the potential “error” customers into the model requires additional assumptions,

however, the main idea we wish to investigate is under what conditions proactive service is still

beneficial despite errors. To do so with an analytical model, we assume that every time the server

pulls a customer from orbit it makes an error with probability 1− q. That is, a proportion 1− q
of customers served proactively would not have transitioned to the service system had they not

been pulled and, therefore, would not have been served at all. As a consequence, errors increase

the effective arrival rate to the system.

By construction, under these assumptions the analysis of the benchmark case (where there is no

proactive service) does not change. The steady-state occupancies of the orbit and the service queue

follow the Poisson and Geometric distributions with parameters pλ
γ

and ρ, respectively. However,

the exact analysis of the system with proactive service is substantially more challenging. Lemma

1 no longer holds because, unlike in the case with no errors, the total number of customers in the

system in steady state now depends on how frequently the server pulls from the orbit due to errors.

Therefore, there is no longer a guarantee that proactive service will lead to shorter waiting times.

The asymptotic analysis, however, can be used to develop approximations of system performance.

Taking the case of a single server, it can be shown that Theorem 1 holds in this case as well because

the service rate for customers from orbit does not play a role in the proof. (Note: Theorem 2 would

apply in the multiserver case by the same reasoning.) Now, assuming that Theorem 1 also holds

for finite systems as well, allows us to model the system using a birth-death process as follows.

Let NQ denote the total number of customers in the queue. Since this is a Markovian system, the

birth rate (i.e., the rate of transition from NQ to NQ + 1) is given by λ. If NQ ≥ pλ/γ, then orbit

occupancy is pλ/γ customers and the rest of the customers are waiting in the service queue. In this

case, the departure rate from NQ to NQ− 1 is given by the service rate µ – since the server picks

customers from the service queue it never makes mistakes. If 0 < NQ < pλ/γ then all customers

are in orbit. Hence, the departure rate is µq, since there is a probability 1− q that the server will

pull a customer in error. Therefore, the total number of customers in the system (including those

in service) can be modeled as the birth-death process pictured in Figure 5 and the occupancy

distribution can be estimated using simple recursive equations.

Figure 5 Birth-Death Transition
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From this, we can estimate delays in the system as a whole. To estimate delays at the service

system and the orbit we need to use Theorem 1 again. More specifically, for every state NQ of the

system described by Figure 5, Theorem 1 implies that the number of customers in orbit is NQ−1

if 0<NQ < pλ/γ and pλ/γ if NQ > pλ/γ and all other customers are in the service queue. With

this, we can then estimate the average occupancy of the service queue. If q 6= ρ, then

N̄s ≈
ρ

1− ρ
P0(n)

q− ρ

(
1− ρ+ (q− ρ)

(
ρ

q

)n(
n− pλ

γ
+
q− 1

q− ρ +
ρ

1− ρ

))
, (8)

≈ ρ

1− ρ
P0(pλ

γ
+ 1)

q− ρ

1− ρ+ (q− ρ)

(
ρ

q

)( pλγ +1)(
1 +

q− 1

q− ρ +
ρ

1− ρ

) , (9)

where n := bpλ
γ

+ 1c, P0(x) =

(
q
q−ρ

(
1−

(
ρ
q

)x+1
)

+ ρ
1−ρ

(
ρ
q

)x)−1

, and if q= ρ, then

N̄s ≈
ρ

1− ρ

(
1

n+ 1
1−ρ

)(
n(1− ρ)

ρ
+

(
n+ 1− pλ

γ
+

ρ

1− ρ

))
, (10)

≈ ρ

1− ρ

(
1

(pλ
γ

+ 1) + 1
1−ρ

)((
pλ

γ
+ 1

)
1− ρ
ρ

+

(
2 +

ρ

1− ρ

))
. (11)

The approximations given by (9) and (11), which are smooth in the proportion of flexible customers

p, follow from those of (8) and (10), respectively, by letting bpλ
γ
c= pλ

γ
.

Estimates for delays of inflexible customers in the service queue can then be estimated as T̄ss =

(N̄s + 1)/µ, which follows from the PASTA property and the memorylessness of service times. To

get an approximation for the delays of flexible customers in the service queue T̄rs, we make the

assumption that the arrival process of flexible customers to the service queue can be approximated

by a Poisson process. Given this approximation, the delays for flexible customers in the service

queue are equal to those of inflexible customers. Naturally, this approximation becomes more

accurate as utilization increases and fewer customers are served proactively. We illustrate the

performance of these approximations with a specific example in Figure 6. This example, and a

more extensive numerical comparison, suggests that the approximations work well when ρ≥ 0.75

and (µ−λ)/γ ≤ 1.7 Using these approximations, one can make several interesting observations, which

we summarize with the following proposition.

7 We compare this approximation to simulations for the cases when λ/µ∈ {.75, .8, .825, .85, .875, .9, .925, .95, .975, .99},
µ= 1, γ ∈ {.25, .2, .15, .1, , .05, .025}, p∈ {.001, .1, .2, ..., .9, .999}, and q ∈ {.1, .2, ..., .9,1}. Each combination is simulated
for 30 replications, each replication is simulated for 100,000 units of time, of which the first 20% is considered a
warm-up period and is subsequently excluded from estimation of performance measures. For the cases when γ > µ−λ,
the simulated T̄ss and T̄rs are respectively within 10% absolute percent deviation from the approximation 95.7% and
93.4% of the time, where the approximation follows from (8) and (10) for N̄s and T̄rs = T̄ss = (N̄s+1)/µ. The average
absolute percentage deviations for T̄ss and T̄rs are 3.36% and 4.18% (respectively).
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Proposition 6. There exists a threshold 0< q̄ < 1 such that the system with proactive service

generates lower waiting times compared to the system without proactive service if, and only if, the

proportion of errors is less than 1− q̄. Furthermore,

(i) If ρ> 1
2

+ γ
2pλ

, then the maximum proportion of errors the system can tolerate (1− q̄) is greater

than the system’s idle time (1− ρ).

(ii) There exist combinations of parameters (p,λ, γ,µ) such that the threshold q̄ is decreasing in

utilization (i.e., as the service rate µ approaches the arrival rate λ).

The proposition establishes the intuitive result that proactive service reduces waiting times only

if the proportion of errors is below a critical threshold. What is more interesting is that, provided

the system is relatively highly utilized (i.e., ρ> 1
2

+ γ
2pλ

), then proactive service may reduce waiting

times even if the proportion of errors is greater than the system’s idle capacity. Furthermore,

the proposition shows that there exist cases such that at higher system utilization (i.e., as µ

approaches λ) the system is able to handle more errors. In fact, we empirically observe that the

system’s tolerance for error increase with utilization in 99.49% of numerical experiments described

in footnote 7. The finding that a more heavily utilized system is able to handle more errors and

still benefit customers compared to the benchmark case is illustrated in Figure 6. Figure 6 depicts

the delays for flexible customers in the service queue when p = 1 as a function of the error rate

(1− q) and shows that at a utilization of ρ= 85% the system can tolerate an error rate as high as

60% before the benefits of proactive service are eroded by errors, and when utilization increases

to ρ= 95% the system can handle an error rate of almost 70% before delays are greater than the

benchmark case. Furthermore, as Figure 6 also makes clear, this result is not an artifact of the

approximation as it is confirmed by the simulation study. This finding seems counterintuitive at

first because, in a more heavily utilized system, one would expect errors to increase delays more

than in a system at lower utilization. However, this can be explained by the fact that reduction in

delays gained through proactive service grows as utilization increases.

6. Discussion

This paper set out to explore two high-level questions: (i) What is the operational impact of

proactive service, and (ii) are there any economic frictions associated with proactive service?

From an operational perspective there are two contributions. The first is to show that proactive

service can substantially reduce delays for both flexible and inflexible customers. This is the case in

both single- and multiserver settings and remains true even if the proportion of flexible customers

is limited or proactive service may result in sometimes serving customers who would not have

otherwise required service. The second contribution is the diffusion approximation, based on novel

asymptotic limits, that allow us to quantify these benefits with closed-form expressions.
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Figure 6 T̄rs vs Proportion of Errors (1− q), where p= 1, γ = .25, µ= 1, λ∈ {.85, .90, .95}.
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From an economic perspective, the most important contribution is to show that proactive service

is likely to be under-adopted due to a free-riding problem and may also exacerbate customers’

incentives to over-join the system. Furthermore, the equilibrium behaviour of the system with

proactive service generates counterintuitive findings. For example, as the waiting time cost increases

the arrival rate may increase – due to the higher cost of waiting in the queue more customers

decide to adopt proactive service, which in turn reduces average waiting time and, thus, induces

more customers to join the system. These results underline the importance of formally modelling

proactive service and suggest that, in order to realize the operational benefits of proactive service,

providers will need to offer incentives (e.g., tolls) that alleviate the economic frictions of free-riding

and over-utilization.

A. Appendix
A.1. Proof of Lemma 1:

The result follows from the fact that the system without proactive service and the service queue

when proactive service is used can be modeled by Markov chains with identical transition rates. �

A.2. Proof of Proposition 1:

We prove part (i) of the proposition using a path-wise coupling of stochastic processes on a common

probability space. We provide the sketch of the proof since this approach is standard in queueing

literature (See Levin et al. 2009, Chapters 4,5 for an introduction). Fix a sample-path (i.e., the

sequence of customer inter-arrival times) to both locations, the sequence of information lead-times

(times in orbit), and the sequence of service times. Now, given this sample path, we compare the

resultant orbit occupancy processes in a system with proactive service to that without on the

same probability space (i.e., Nr(t) and NB
r (t)). By examining all possible events (e.g., arrivals,

customer departures from orbit, and customer departures from the service queue), one can show

that Nr(t)≤NB
r (t) in each such sample path. The result follows then by Shaked and Shanthikumar

2007, Theorem 1.A.1.
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Part (ii) of the proposition is an immediate consequence of Lemma 1 and the non-negativity of

Nr(t). �

A.3. Proof of Proposition 2:

We first establish four equalities using MVA and then prove the desired results using these equali-

ties. Because external arrivals follow a Poisson process, by the PASTA property Tijms (2003) and

the fact that service times are exponential, we have (a), T̄ss = N̄s+1
µ

. By Little’s Law (Kleinrock 1976,

eq.2.25 on pg.17) we have the following identities, (b), N̄r = pλT̄rr and (c) N̄s = λ
(
(1− p)T̄ss + pT̄rs

)
.

Finally Lemma 1 yields (d), N̄r + N̄s = λ
µ−λ .

By Proposition 1(i) and (b), we have (i). Similarly (ii) follows from Proposition 1(ii) and (a).

Observing that, for the benchmark system with no proactive service that T̄Bss = T̄Brs, then equation

(1) implies (iv), and combining this with (ii) yields (iii). Next we prove (1) to conclude the proof.

By (c) and (a) we have (µ− λ)Tss − 1 =−λp(Tss − Trs), and plugging in (b) and (c) for Nr and

Ns in (d), respectively, we obtain (µ−λ)Tss−1 = (µ−λ)p(Tss−Trs)−p(µ−λ)Trr, combining this

with (µ−λ)Tss− 1 =−λp(Tss−Trs) yields (1). �

A.4. Sketch for Proof of Proposition 3:

We provide a sketch of the couplings used in the proof of part (i) which, when combined with

Lemma 1 implies part (ii), and from both parts (i) and (ii) the monotone results follow. Full details

are provided in the online appendix. We note that the exponential assumptions of inter-event times

are necessary for the coupling in this proof.

To show that πr is increasing in p (in a stochastic ordering sense), we couple the arrival and service

queue departure events (service completions) so that arrivals and departures are synchronized

across two versions of the Markov Chain, representing the state of the processes (note: this means

the number of customers in each version is identical also). We further couple the customer types

such that a flexible arrival in the first version implies a flexible arrival in the second, but an

inflexible customer arrival in the first may result in a flexible customer arrival in the second (this

captures the difference in p across versions). Lastly the epochs when a flexible customer in orbit

self-transitions to the service queue are also coupled such that when there are more people in orbit

in the second version (because more flexible customers have arrived there), then customers may

depart in the second version but not the first. However, if the number in orbit across versions is

identical then these events are synchronized across versions.

To show that πr is decreasing in γ (in a stochastic ordering sense) we couple arrivals, customer

types, and service queue departure events so that arrivals and departures are synchronized across

two versions of the Markov Chain representing the state of the processes. We then vary the rate

at which customers depart from orbit to the service queue on their own across versions so that

customers depart orbit faster in the second version. By coupling the self-transitions from orbit to

the service queue such that the common (minimum) self-transition rate across versions (at a given

point in time) is captured by one exponential variable, and the difference in transition rates across

versions is captured by another exponential variable, we couple the self-transition events such that

when the number in orbit is identical across systems it cannot be that the system with a slower

transition rate (smaller γ) has a departure when the faster version does not.
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A.5. Sketch for proof of Theorem 1:

We provide a sketch of the proof; full details are provided in the online appendix. We prove the

result in two steps, and in each step we use the approach in Reiman (1984). First we prove that

for any ε > 0

P

{
sup

0≤t<1

N̂n
r (t)>

pλn

γ
+ ε

}
→ 0, as n→∞. (12)

This result implies that the number of customers in the orbit is almost always less than pλn

γ
,

therefore bounded. We prove this result by showing that whenever the number of customers in the

orbit is more than pλn

γ
, then the rate customers leave the orbit is much higher that the rate that

they arrive to the orbit, regardless of the number of customers in the service queue.

In the second step we focus on the service queue, assuming N̂n
r (t) ≤ pλn

γ
+ ε/4 for all t and

arbitrary ε > 0. We know from (12) that the probability that this assumption holds goes to 1 as

n→∞. Next we prove that, under this assumption, if∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣> ε. (13)

that is, the claimed state-space collapse result does not hold, then

N̂n
r (t)< pλn/γ− ε/2, and N̂n

s (t)>
ε

2
. (14)

In other words, (33) implies that the number of customers in orbit is strictly less than the upper

bound pλn

γn
and the number of customers in the service queue is non-negative. Because the service

queue has priority this implies that whenever (13) holds, the server will only serve the service queue.

We then show that the service queue must therefore reach zero quickly. But if the service queue is

empty, then
∣∣∣N̂n

r (t)−
(
N̂n
Q(t)∧ pλn

γ

)∣∣∣< ε/4 and so (13) cannot hold. Since ε > 0 is arbitrary, this

proves the desired result.

A.6. Sketch for Proof of Proposition 4:

There are six possible types of equilibrium strategies which are the combinations of λe < Λ or

λe = Λ with pe = 0 or 0 < pe < 1 or pe = 1. We show each type of equilibrium corresponds to a

given region of the parameter space in v and h which can be expressed in terms of the other model

primitives Λ, γ, µ, ws, and wr. To prove part (i.) on the uniqueness and existence of equilibrium,

we show that the regions are mutually exclusive and collectively exhaustive. The cases (unique

equilibrium solution and region) are:

Case 1:pe = 0 and λe = Λ, if Λ<µ, v≥ v̂0 := ws
µ−Λ

and h≥ ĥΛ :=
(
ws
µ
− wr

µ−Λ

)
Λ2

γµ
(− ln Λ

µ
).

Case 2: pe = 0 and λe = λ0 := µ− ws
v
<Λ, if either Λ ≥ µ or v < v̂0 and h ≥ ĥλ0

:=(
ws
µ
− wr

µ−λ0

)
λ2

0
γµ

(− ln λ0
µ

).

Case 3: pe = 1 and λe = Λ, if Λ< µ, v ≥ v̂1 := ws
µ−Λ

+ h− ws−wr
µ−Λ

Λ
µ

(
1− (Λ/µ)

Λ/γ
)

and h≤ ȟΛ :=(
ws
µ
− wr

µ−Λ

)
Λ
µ

(
1− (Λ/µ)

Λ/γ
)

.

Case 4: pe = 1 and λe = λ1 <Λ, if either Λ ≥ µ or v < v̂1 and h ≤ ȟλ1
:=(

ws
µ
− wr

µ−λ1

)
λ1
µ

(
1− (λ1/µ)

λ1/γ
)

, where λ1 is implicitly defined by v = ws
µ−λ1

+ h −
ws−wr
µ−λ1

λ1
µ

(
1− (λ1/µ)

λ1/γ
)

.
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Case 5: 0< pe = p̃ < 1 and λe = Λ, if Λ<µ, v≥ v̂p := ws
µ−Λ

(
1− (Λ/µ)

2
(

1− (Λ/µ)
p̃Λ/γ
))

, and ȟΛ <

h< ĥΛ, where p̃ is implicitly defined by h=
(
ws
µ
− wr

µ−Λ

)
Λ
p̃µ

(
1− (Λ/µ)

p̃Λ/γ
)

.

Case 6: 0< pe = p̃ < 1 and λe = λ̃ <Λ, if either Λ>µ or v < v̂p, and ȟλ1
<h< ĥλ0

, where (p̃, λ̃)

solve,

v=
ws

µ− λ̃

1−
(
λ̃

µ

)2
1−

(
λ̃

µ

) p̃λ̃
γ


 , (15)

h=

(
ws
µ
− wr

µ− λ̃

)
λ̃

p̃µ

1−
(
λ̃

µ

) pλ̃
γ

 . (16)

To prove part (ii.) we use the equilibrium condition equations defined in each case to derive the

comparative statics results by taking the full derivatives of the equations.

A.7. Sketch for Proof of Proposition 5:

To prove part (i.) we show that the partial derivative of the welfare function with respect to λ is

negative for all equilibrium arrival rates. To prove part (ii.) we show that, for a fixed exogenous

arrival rate, the result as stated holds, in particular for the case when λ= λso. Then we use the

fact that λe > λso from part (i.) to show that this extends to the case when the arrival rates are

different because, as more customers join in equilibrium, a smaller proportion agree to be flexible.

A.8. Proof of Theorem 2:

The proof is almost identical to that of Theorem 1 and is omitted in the interest of brevity.

A.9. Proof of Proposition 6:

For the first part of the proof we start from the fact that, when proactive service makes no errors

(i.e., q = 1), the system with proactive service generates lower waiting times compared to the

system without proactive service (i.e., Ns(1)< ρ
1−ρ , where Ns(q) is given by the approximation of

(2)). If q = 0, one can use the birth-death process of Figure 5 to show that waiting times will be

approximately Ns(0) = ρ
1−ρ + (n− pλ/γ)> ρ

1−ρ . Therefore, to complete the first part of the proof,

we will need to show that dNs(q)

dq
< 0 for all 0 < q < 1. From the birth-death process depicted in

Figure 5, we have that

P0

(
n∑
i=0

(
ρ

q

)i
+

(
ρ

q

)n ∞∑
i=n+1

ρi−n

)
= 1,

and

Ns(q) = 1−P0 +P0

(
ρ

q

)n ∞∑
i=n+1

ρi−n(i− pλ
γ
− 1).

Therefore, q
P0

dP0
dq

= P0

(∑n

i=0 i
(
ρ
q

)i
+n

(
ρ
q

)n∑∞
i=n+1 ρ

i−n
)
> 0. Furthermore, with some algebraic

manipulation, q
P0

dP0
dq

= n−P0

∑n

i=0(n− i)
(
ρ
q

)i
.

dNs

dq
=−dP0

dq
+

(
q

P0

dP0

dq
−n
)
P0

q

(
ρ

q

)n ∞∑
i=n+1

ρi−n(i− pλ
γ
− 1)
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=−dP0

dq
−
(
P0

n∑
i=0

(n− i)
(
ρ

q

)i)
P0

q

∞∑
i=n+1

ρi−n(i− pλ
γ
− 1)< 0.

Since Ns is monotonic decreasing in q, this implies that there exists a threshold 0< q̄ < 1 such that

Ns(q)<
ρ

1−ρ if and only if q > q̄.

To show that if ρ> 1
2

+ γ
2pλ

then q̄ < ρ, we start from the approximation for Ns when q= ρ, given

by (10). Using this approximation, the system with proactive service reduces waiting time despite

errors if ρ> n
pλ/γ+n

. Since n := bpλ
γ

+ 1c, any ρ> 1
2

+ γ
2pλ

would satisfy this.

For the last part of the proposition, we use the approximation of Ns given by (8), which

implies that q̄ is the unique solution in the interval (0,1) of the following polynomial equa-

tion: qn+1 − qn(1− ρ)− qρn(n− pλ/γ + 1) + ρn(ρ(n− pλ/γ − 1) + 1) = 0. We know the solution

q̄ exists and is unique from the first part of the proposition. As µ approaches λ the system

utilization ρ increases but n and λ remain unchanged. Differentiating the polynomial equation

with respect to ρ gives dq̄
dρ

= − b(q̄,ρ)

a(q̄,ρ)
, where a(q, ρ) = qn

(
1 +n−n 1−ρ

q
− (2− δ)(ρ

q
)
n
)
, b(q, ρ) =

qn
(

1−
(
ρ
q

)n (
n q
ρ
(2− δ− 1/q) + δ(n+ 1)

))
, where δ := pλ/γ+1−n. Assume that no combination

of parameters (p,λ, γ,µ) exist such that dq̄
dρ
< 0, by counter example we arrive at a contradiction –

let p= 1, λ= .85, γ = .25, and µ= 1, then q̄= .422959 and dq̄
dρ

=−0.3. Thus there exist combinations

of parameters (p,λ, γµ) such that the threshold q̄ is decreasing in utilization.
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B. Online Appendix
B.1. Performance of delay approximations compared to simulation

B.1.1. Single-server Approximation We simulate the single-server system with proac-

tive service at 792 different parameter settings, specifically all combinations of p ∈
{.01, .1, .2, ..., .8, .9, .99}, λ ∈ {.45, .55, ..., .85, .95}, γ ∈ {.001, .01, .2, .4, ...,1.8,2}, and µ = 1.

Each combination is simulated for 100,000 units of time of which the first 20% is considered

a warm-up period and is not included in the estimation of performance measures. Each

combination is further run for 30 replications from which we compute simulation errors

and 95% confidence intervals.

Figure 7 shows a comparison of the simulated and the approximated customer delays

for a subset of the simulation parameters. The first row (Figures 7a–7c) shows that the

accuracy of the approximation improves as utilization (λ) increases, for example, for p= .5

and γ = 0.2 when λ= .45, the % error of delays in the service queue for flexible customers

(i.e., T̄rs) is -15.12%; when utilization increases and λ= .95, that decreases to 1.6%. The

second row (Figures 7d–7f) shows the approximations for time spent in the service queue

(i.e., Tss and Trs) work well for any value of p, however the approximation overestimates

time spent in orbit (i.e. T̄rr) if p and γ are relatively small. The third row (Figures 7g–7i)

shows that the accuracy of the approximation deteriorates as γ decreases.

To further understand the degradation of the accuracy of the approximation, especially

at small values of γ, we run additional simulations. Specifically, for any value of λ ∈
{.45, .55, ..., .85, .95}, we run simulations where γ is set such that µ−λ

γ
∈ {.01, .2, .4, ...,2,2.2}.

Figures 8a–8c show that the accuracy of the approximation (measured as relative error(
Approx.−Simulated

Simulated

)
) deteriorates as µ−λ

γ
increases. Furthermore, the figures demonstrate that

if ρ≥ .75 and µ−λ
γ
≤ 1, the approximations for time spent in the service queue (i.e., Tss and

Trs) are quite accurate – the error is less than 5.6% – and the error for the time spent in

orbit (i.e., Trr) is no more than 13.8% (but we note that time spent in orbit is small by

comparison to time spend in the service queue, making the relative error large).

B.1.2. Multiserver Approximation The comparison of approximations to simulated

performance in the multiserver case is carried out to the same technical specifications as the

single-server case with minor changes in the parameter space. In the multiserver case, uti-

lization is now expressed as ρ= λ
mµ

. We fix µ= 1 and vary p∈ {.01, .1, .2, ..., .8, .9, .99}, ρ∈
{.45, .55, ..., .85, .95}, γ ∈ {0.1, .03, .45, .6, .85,1,2,3,4,5}, and m ∈ {1,2...,40}. Figure 9

shows that the performance of the approximation improves as the number of servers

increase and, as in the single-server case, it also improves as information lead time

decreases. Further, we again find that the accuracy of the approximation improves as uti-

lization increases and deteriorates as information lead time grows large (i.e., γ small). In

all simulation instances where λ
γN̄mB

s
≤ 1 and ρ≥ .75, the approximations for T̄ss and T̄rs

are within 3.86% and 4.31% of the respective simulated values. The approximation for T̄rr
can have a relative error as large as 206.85% even if λ

γN̄mB
s
≤ 1 and ρ≥ .75; however, this

is due to the fact that T̄rr can be small itself and we note that, if λ
γN̄mB

s
≤ 1 and ρ≥ .75,
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Figure 7 Single-server Approximation Performance – Simulated values are shown as solid (red) lines with 95%

confidence intervals, and approximations are shown as dashed (blue) lines.
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(d) T̄ss vs p, where λ= .85
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Figure 8 Single-server approximation: Simulation errors with 95% confidence intervals for p= .5.
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Figure 9 Multiserver Approximation Performance – Simulated values are shown as solid red lines with 95%

confidence intervals, and approximations are shown as dashed (blue) lines for p= .5, ρ= .85.
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the average absolute error is 0.024 units of time (i.e., 2.4% of the expected service time).

B.2. Proofs

B.2.1. Detailed Proof of Proposition 3

We use two different coupling arguments for ordering in p and γ; however, the proof

ideas are similar, therefore we mainly focus on ordering in p and explain the differences

for γ at the end. We prove the result in two steps: a) we first build the underlying coupled

queue length processes in a common probability space such that the marginal distribution

of each individual process is the same as the original processes, and b) we show that the

orbit queue length processes are ordered as desired w.p.1 using an induction argument at

the transition times in the coupled processes.

Before we present the details of coupling, note that given parameters p,λ, γ, and µ,

the state of a proactive service system at time t, denoted by N(t) := (Nr(t),Ns(t)), is a

continuous time Markov chain. Specifically if Nr(t) = nr and Ns(t) = ns the transition rates

of this Markov chain with the associated event are given as follows;

Arrival to orbit: To (nr + 1, ns) with pλ (17)

Arrival rate to service queue: To (nr, ns + 1) with (1− p)λ (18)

Orbit jump rate to service: To (nr− 1, ns + 1) with γnr (19)

Service completion: To (nr, ns− 1) if ns− 1≥ 1 or to (nr− 1, ns− 1) if ns− 1 = 1,

with µ1{Ns(t)> 0}. (20)

Proof of ordering in p: Step I: (Coupling) Consider two systems with proactive ser-

vice as depicted in Figure 1 with orbit arrival probabilities 0≤ p(1) < p(2) ≤ 1 respectively,

with all other parameters (i.e., λ,γ, and µ) equal. Our first objective is to construct two

stochastic processes N(1) and N(2) in the same probability space using a coupling argu-

ment such that for j = 1,2, N(j) has the same transition rates as in (17)-(20) (given their

parameters). This then implies that each of the individual occupancy processes has the

same marginal distribution as that without a coupling.



36 Proactive Customer Service

Let ` = {`i, i = 1,2, ..} and u = {ui, i = 1,2, ..} be independent sequences of i.i.d expo-

nentially distributed random variables with rates λ and µ respectively. Let g(j) = {g(j)
i , i=

1,2, ..}, j = 1,2 denote two independent i.i.d. sequences of exponentially distributed ran-

dom variables both with rates γ. Let b(1) = {b(1)
i , i = 1,2, ..} denote a sequence of i.i.d.

Bernoulli random variables with parameter p(1). Lastly, construct a second sequence (inde-

pendent from `, u and g(j)) b(2) = {b(2)
i , i= 1,2, ..} such that if b

(1)
i = 1 then b

(2)
i = 1, but if

b
(1)
i = 0 then b

(2)
i = 1 with probability p(2)−p(1)

1−p(1) , and b
(2)
i = 0 with probability 1−p(2)

1−p(1) . Hence

b
(2)
i = 1 with probability p(2) and 0 with probability 1− p(2).

We define the coupled processes at the transition times, τ0, τ1, . . . (how these times are

chosen explained below) as follows. Consider the sequence of event times τk when the state

changes (e.g., an arrival) and set τ0 = 0. The system state stays at the same level until the

next event. Let δ1 = (N
(1)
r (τk)∧N (2)

r (τk)) and δ2 = (N
(1)
r (τk)∨N (2)

r (τk))− δ1 and

G
(1)
k =

g
(1)
k

δ1

and G
(2)
k =

g
(2)
k

δ2

, (21)

where by convention we take ./0 =∞. Also let

µ̃k =
µk

1

{
N

(1)
s (τk) +N

(2)
s (τk)≥ 1

} . (22)

Now define

∆k = min
{
`k,G

(1)
k ,G

(2)
k , µ̃k

}
. (23)

Based on which term is the minimizer we update the system state for j = 1,2 as follows.

Set τk+1 = τk + ∆k.

• If ∆k = `k then for j = 1,2:

— if N
(j)
s (τk)≥ 1 and b

(j)
k = 1, then set N

(j)
r (τk+1) =N

(j)
r (τk) + 1,

— if b
(j)
k = 0 or if N

(j)
s (τk) = 0 and b

(j)
k = 1, then set N

(j)
s (τk+1) =N

(j)
s (τk) + 1.

• If ∆k = µ̃k then for j = 1,2:

— if N
(j)
s (τk)> 1, then set N

(j)
s (τk+1) =N

(j)
s (τk)− 1

— if N
(j)
s (τk) = 1 and N

(j)
r (τk)> 0, then set N

(j)
r (τk+1) =N

(j)
r (τk)− 1

— if N
(j)
s (τk) = 0, then no change in the state .

• If ∆k =G
(1)
k then for j = 1,2:

— set N
(j)
s (τk+1) =N

(j)
s (τk) + 1 and N

(j)
r (τk+1) =N

(j)
r (τk)− 1.

• If ∆k =G
(2)
k ,

— if N
(1)
r (τk)>N

(2)
r (τk), then set N

(1)
s (τk+1) =N

(1)
s (τk)+1 and N

(1)
r (τk+1) =N

(1)
r (τk)−

1 and N
(2)
s (τk+1) =N

(2)
s (τk) and N

(2)
r (τk+1) =N

(2)
r (τk).

— if N
(1)
r (τk)<N

(2)
r (τk), then set N

(2)
s (τk+1) =N

(2)
s (τk)+1 and N

(2)
r (τk+1) =N

(2)
r (τk)−

1 and N
(1)
s (τk+1) =N

(1)
s (τk) and N

(1)
r (τk+1) =N

(1)
r (τk).

We claim that N (j) is a Markov chain with the transition rates given in (17)-(20) with

p = p(j). This follows from the standard uniformization argument for Markov processes
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(see Section 6.7 in Ross probability models) and the fact that {N (j)(τk)} is a discrete time

Markov chain for j = 1,2. In addition, because both chains have the interarrival and service

times sequences:

N (1)
r (t) +N (1)

s (t) =N (2)
r (t) +N (2)

s (t), ∀t≥ 0. (24)

Step II: (Induction) Now we use an induction argument and prove that N
(1)
r (τk)≤N (2)

r (τk)

for k= 1,2, . . . when p(1) ≤ p(2). Assume without loss of generality, because both chains are

positive recurrent, that N (1)(0) =N (2)(0) .

Induction base case. Given Nr(0) =Nr(0), by the coupling above we have G
(2)
k =∞, so

jumps from orbit are synchronized which implies N
(1)
r (τ1) =N

(2)
r (τ1) if ∆k =G

(1)
k . Further

service departures are also synchronized, thus any incidents of proactive service departures

from orbit are synchronized, which implies N
(1)
r (τ1) =N

(2)
r (τ1) if ∆k = µ̃k. Finally, arrival

events are synchronized; however, they can differ on arrival location. Since b
(1)
k ≤ b

(2)
k it

must be that N
(1)
r (τ1)≤N (2)

r (τ1).

Assume inductively that N
(1)
r (τk) ≤ N (2)

r (τk) is true for k = 1,2, .., n and we now show

this inequality holds for k= n+ 1. If N
(1)
r (τn) =N

(2)
r (τn) then by (24), N

(1)
s (τn) =N

(2)
s (τn).

Therefore N
(1)
r (τn+1)≤N (2)

r (τn+1) by the same reasoning as in the base case. If N
(1)
r (τn)<

N
(2)
r (τn) then, because each process N

(j)
r can change by at most 1 when any event occurs

(note a departure from orbit and arrival cannot co-occur), then N
(1)
r (τn+1) ≤N (2)

r (τn+1).

This completes the proof of ordering in p.

Proof of ordering in γ: To prove the ordering result in γ we need to modify the coupling

argument. Once the coupling is modified, the proof follows using the same argument in

the proof of ordering in p. Specifically we need to alter the transition rates associated

with jumps from the orbit as follows. Set γ(1) < γ(2), all other parameters p, λ and µ,

being equal. Let ` and u be defined as above and {bi, i= 1,2, ..} denote a sequence of i.i.d

Bernoulli random variables with parameter p. Finally we let g(j) = {g(j)
i , i= 1,2, ...} denote

a sequence of i.i.d. exponential random variables with parameter 1 for j = 1,2.

Consider the sequence of event times τk when the state changes as above. Let δ1 =

(γ(1)N
(1)
r (τk)∧ γ(2)N

(2)
r (τk)) and δ2 = (γ(1)N

(1)
r (τk)∨ γ(2)N

(2)
r (τk))− δ1 and

G
(1)
k =

g
(1)
k

δ1

and G
(2)
k =

g
(2)
k

δ2

. (25)

With `k, µ̃k and ∆k defined as in the proof of part (i). Note that both systems have the

same probability that an arrival is an arrival to the orbit in this case, hence we do not

need two different sequences b(1) and b(2). The transition rates are altered as follows.

• If ∆k =G
(1)
k then for j = 1,2:

— set N
(j)
s (τk+1) =N

(j)
s (τk) + 1 and N

(j)
r (τk+1) =N

(j)
r (τk)− 1.

• If ∆k =G
(2)
k ,

— if γ(1)N
(1)
r (τk) > γ(2)N

(2)
r (τk), then set N

(1)
s (τk+1) = N

(1)
s (τk) + 1 and N

(1)
r (τk+1) =

N
(1)
r (τk)− 1 and N

(2)
s (τk+1) =N

(2)
s (τk) and N

(2)
r (τk+1) =N

(2)
r (τk).
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— if γ(1)N
(1)
r (τk) < γ(2)N

(2)
r (τk), then set N

(2)
s (τk+1) = N

(2)
s (τk) + 1 and N

(2)
r (τk+1) =

N
(2)
r (τk)− 1 and N

(1)
s (τk+1) =N

(1)
s (τk) and N

(1)
r (τk+1) =N

(1)
r (τk).

Observing this coupling means that, when N
(1)
r (τk) = N

(2)
r (τk) then γ(1)N

(1)
r (τk) <

γ(2)N
(2)
r (τk), thus N

(1)
r cannot decrease below N

(2)
r via a spontaneous jump from orbit. Fur-

thermore, because (24) still holds, if N
(1)
r (τk) = N

(2)
r (τk), then N

(1)
s (τk) = N

(2)
s (τk), hence

there cannot be a service completion and proactive service event such that N
(1)
r decreases

when N
(2)
r does not. Proof of part (ii) follows from part (i) and (24).

Proof of part (iii): The monotonicity of N̄r and N̄s in p and γ given in Table 1 are

immediately implied by parts (i) and (ii). That T̄rr is decreasing in γ then follows from

the application of Little’s Law to orbit (i.e., N̄r = pλT̄rr) and that N̄r is decreasing in γ.

Similarly, that T̄ss is increasing in γ then follows from the relation between service queue

occupancy and delays for inflexible customers (i.e., T̄ss = (1/µ)(N̄s + 1)) and that N̄s is

increasing in γ. That T̄rs is increasing in γ then follows from T̄rs = T̄ss− µ−λ
µ
T̄rr and that

T̄rr and T̄ss are respectively decreasing and increasing in γ. Lastly that T̄ss is decreasing in

p then follows from the relation between service queue occupancy and delays for inflexible

customers (i.e., T̄ss = (1/µ)(N̄s + 1)) and that N̄s is decreasing in p. �

B.2.2. Proof of Theorem 1: We begin by defining the necessary notation. Let An
r (t)

and An
s (t) to be Poisson Processes with rates pλn and (1− p)λn, respectively. For a given

n, An
r (t) and An

s (t) represent the number of arrivals to the orbit and to the service queue,

respectively, up to time t. Further let C(t) and S(t) be Poisson processes with rate one

and let Dn(t) denote the total number of customers who are served proactively (i.e., pulled

from orbit) up to time t. Then:

Nn
r (t) =Nn

r (0) +An
r (t)−C

(
γn
∫ t

0

Nn
r (s)ds

)
−Dn(t), (26)

Nn
s (t) =Nn

s (0) +An
s (t) +C

(
γn
∫ t

0

Nn
r (s)ds

)
+Dn(t)−S

(
µ

∫ t

0

1[Nn
s (s)>0]ds

)
(27)

The scaled occupancy processes can now be expressed as:

N̂n
r (t) :=

Nn
r (nt)√
n

=
Nn
r (0)√
n

+
An
r (nt)√
n
−
C
(
nγ
∫ t

0
N̂n
r (u)du

)
√
n

− D
n(nt)√
n

, (28)

N̂n
s (t) :=

Nn
s (nt)√
n

=
Nn
s (0)√
n

+
An
s (nt)√
n

+
C
(
nγ
∫ t

0
N̂n
r (u)du

)
√
n

+
Dn(nt)√

n
−
S
(
nµ
∫ t

0
1[N̂n

s (u)>0]du
)

√
n

.

(29)

Assume that N̂n
r (0) =

(
N̂n
Q(0)∧ pλn

γ

)
. We prove the result in two steps. We first

show that (12) holds for any ε > 0. Using an idea similar to Reiman (1984), assume

that N̂n
r (t) > pλn/γ + ε for some t ∈ [0,1] and let T n = inf0<t≤1

{
t : N̂n

r (t)> pλn/γ + ε
}

.

Define τn = sup0<t<T

{
t : N̂n

r (t)≤ pλn/γ + ε/2

}
. Hence i) between times τn and

Tn that arrivals to orbit exceed the departures from orbit by ε/2 as well as
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ii) N̂n
r (t) ≥ pλn/γ + ε/2, ∀ t ∈ [τn, T n]. Thus, defining f(t1; t2) = f(t2) − f(t1)

for a process f with t1 < t2, we have that P
{

sup0≤t<1 N̂
n
r (t)> pλ

γ
+ ε
}
≤

P

{
sup0≤t1≤t2<1

Anr (nt1;nt2)√
n

− C
(
nγ
∫ t2
0

(
pλn

γ
+ ε

2

)
du
)
−C
(
nγ
∫ t1
0

(
pλn

γ
+ ε

2

)
du
)

√
n

> ε
2

}
.

Let

Ãn
r (t1; t2) :=

√
n

(
An
r (nt1;nt2)

n
− pλn(t2− t1)

)
, and

C̃n(t1; t2) :=
√
n

C
(
nγ
∫ t2

0

(
pλn

γ
+ ε

2

)
du
)
−C

(
nγ
∫ t1

0

(
pλn

γ
+ ε

2

)
du
)

n
− γ(t2− t1)

(
pλn

γ
+
ε

2

) .

We have:

P

 sup
0≤t1≤t2<1

An
r (nt1;nt2)√

n
−
C
(
nγ
∫ t2

0

(
pλn

γ
+ ε

2

)
du
)
−C

(
nγ
∫ t1

0

(
pλn

γ
+ ε

2

)
du
)

√
n

>
ε

2

≤
P

 sup
0≤t1≤t2<1
t2−t1≤δ

Ãn
r (t1; t2)− C̃n(t1; t2)>

ε

2

+P

 sup
0≤t1≤t2<1
t2−t1>δ

Ãn
r (t1; t2)− C̃n(t1; t2)−

√
n
γε(t2− t1)

2
>
ε

2

 .

The process
√
n(A

n
r (nt)
n
− pλnt) converges weakly to a Brownian Motion with drift 0 and

variance pλ as n goes to infinity by the FCLT. Similarly
√
n(C

n(nt)
n
− t) converges weakly

to a standard Brownian Motion. Therefore by the continuous mapping theorem, the first

term on the right-hand side is arbitrarily small for small δ, and the second term goes to

zero as n goes to infinity because the term
√
nγε(t2−t1)

2
goes to negative infinity as n goes

to infinity. This yields (12).

The next step is to show that,

P

{
sup

0≤t<1

∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣> ε}→ 0 as n→∞. (30)

Assume that there exists t ∈ [0,1] such that
∣∣∣N̂n

r (t)−
(
N̂n
Q(t)∧ pλn

γ

)∣∣∣ >

ε. Define Tn = inf0≤t{t :
∣∣∣N̂n

r (t)−
(
N̂n
Q(t)∧ pλn

γ

)∣∣∣ > ε} and τn =

sup0<t<T

{
t :
∣∣∣N̂n

r (t)−
(
N̂n
Q(t)∧ pλn

γ

)∣∣∣> ε/2

}
. Hence

∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλn

γ

)∣∣∣ > ε/2, ∀ t ∈
[τn, Tn]. Also assume that:

sup
0≤t≤1

N̂n
r (t)<

pλn

γ
+ ε/4. (31)

We claim that (31) implies:

N̂n
r (t)< pλn/γ− ε/2, and N̂n

s (t)>
ε

2
, ∀t∈ [τn, Tn]. (32)
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To prove (32) first suppose that for some t∈ [τn, Tn]

N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)
> ε/2. (33)

If N̂n
Q(t)< pλn

γ
, then (33) would imply N̂n

r (t)> N̂n
Q(t) which by construction cannot occur.

On the other hand, if pλn

γ
< N̂n

Q(t) then (33) contradicts (31). Hence (33) cannot hold if

(31) holds. Therefore for all t∈ [τn, T n](
N̂n
Q(t)∧ pλ

n

γ

)
− N̂n

r (t)> ε/2.

This clearly implies (32).

Now (32) implies that during [τn, Tn] the server queue (excluding those in service) is

never empty and so no customers are served proactively, i.e., D(nTn)−D(nτn) = 0. Then

by (28), (29), and (32),

P

{
sup

0≤t<1

∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣> ε}≤
P

 sup
0≤t1≤t2<1

An
s (nt1;nt2)√

n
+
C
(
nγ
∫ t2

0

(
pλn

γ
− ε

2

)
ds
)
−C

(
nγ
∫ t1

0

(
pλn

γ
− ε

2

)
ds
)

√
n

−S (nµt2)−S (nµt1)√
n

> ε

}
+P

{
sup

0≤t<1
N̂n
r (t)>

pλ

γ
+ ε/4

}
.

By similar arguments we used in proving (12), and by (12) the right-hand side goes to zero

as n→∞ proving the result. �

B.3. Proof of Proposition 4

B.3.1. Part i. We begin by establishing the preliminary result that if an equilibrium

(pe, λe) exists then Λ
µ
≥ .75, v ≥ 4ws

µ
γ ≥ ws

v
imply that λe

µ
≥ .75 and γ ≥ µ− λe. Consider

the case where customers only choose between balking or joining and being inflexible, then

¯
λ := min{µ− ws

v
,Λ} is the equilibrium arrival rate, see (Hassin and Haviv 2003, Chapter

3, Section 1.1) for the details. Given this, a little algebra shows that, in this case, if Λ
µ
≥

.75, then v ≥ 4ws
µ

implies
¯
λ ≥ .75µ and γ ≥ ws

v
implies

¯
λ ≥ µ− γ. Therefore, to establish

this preliminary result, we must show that no fewer customers will join the system when

customers can also join and be flexible in addition to the options to balk or join and be

inflexible.

In the case when joining and being flexible is dominated, i.e. pe = 0, then λe =
¯
λ and

v −wsT̄ss(0,
¯
λ) ≥ 0 where the inequality holds strictly only in cases where

¯
λ = Λ. In the

case when joining and being flexible is not dominated, i.e. pe > 0, we show λe >
¯
λ by con-

tradiction. Assume by contradiction that for some λe <
¯
λ and pe ∈ (0,1] is an equilibrium.

Then by λ <
¯
λ we have that v − wsT̄ss(0, λ) > v − wsT̄ss(0,

¯
λ) ≥ 0 and by Proposition 3,

specifically that T̄ss is decreasing in p, we have that v−wsT̄ss(p,λ)> v−wsT̄ss(0, λ)≥ 0.



Proactive Customer Service 41

Therefore, relative to the option to balk, the option to join and be inflexible has strictly

higher utility than in the case when no-one is flexible and customers join at rate
¯
λ. This

cannot be an equilibrium as customers have incentive to deviate, thus we have the con-

tradiction we seek and it cannot be that strictly fewer customers join in equilibrium when

customers are given the option to join and be flexible. Going forward we have that, for any

potential equilibrium arrival rate λe, it is such that λe ≥ .75µ and λe ≥ µ− γ.

There are six possible types of equilibrium strategies which are the combinations of

λe <Λ or λe = Λ with pe = 0 or 0< pe < 1 or pe = 1. We show that each type of equilibrium

corresponds to a given region of the parameter space in v and h which can be expressed

in terms the other model primitives Λ, γ, µ, ws, and wr. To prove the uniqueness and

existence of equilibrium, we show that the regions are mutually exclusive and collectively

exhaustive. The cases (unique equilibrium solution and region) are:

Case 1:pe = 0 and λe = Λ. For this to be an equilibrium, it must be that Λ < µ so

that the system is stable if all customers join, v ≥ wsT̄ss(0,Λ) so that customers have no

incentive to balk, and h+wrT̄rr(0,Λ)+wsT̄rs(0,Λ)≥wsT̄ss(0,Λ) so that customers have no

incentive to be flexible. These conditions are respectively equivalent to Λ<µ, v≥ v̂0 := ws
µ−Λ

and h≥ ĥΛ :=
(
ws
µ
− wr

µ−Λ

)
Λ2

γµ
(− ln Λ

µ
), which provides the region where pe = 0 and λe = Λ

is an equilibrium strategy.

Case 2: pe = 0 and λe = λ0 := µ− ws
v
<Λ. Where λ0 is such that 0 = v−wsT̄ss(0, λ0) so

that customers are indifferent between balking, and joining and being inflexible. In terms

of model primitives, this indifference can be expressed as v= ws
µ−λ0

. For this to be an equi-

librium it must be either that Λ≥ µ or v <wsT̄ss(0,Λ) so that if all customers joined there

would be incentive for some to balk, and h+wrT̄rr(0, λ0) +wsT̄rs(0, λ0)≥ wsT̄ss(0, λ0) so

that customers have no incentive to be flexible. These conditions are respectively equiva-

lent to either Λ≥ µ or v < v̂0 and h≥ ĥλ0 :=
(
ws
µ
− wr

µ−λ0

)
λ2

0

γµ
(− ln λ0

µ
), which provides the

region where pe = 0 and λe = λ0 is an equilibrium strategy.

Case 3: pe = 1 and λe = Λ. For this to be an equilibrium it must be that Λ<µ so that

the system is stable if all customers join, h+wrT̄rr(1,Λ)+wsT̄rs(1,Λ)≤ v so that customers

have no incentive to balk when all customers join and are flexible, and wsT̄ss(1,Λ) ≥
h+wrT̄rr(1,Λ) +wsT̄rs(1,Λ) so that customers have no incentive to be inflexible. These

conditions are respectively equivalent to Λ< µ, v ≥ v̂1 := ws
µ−Λ

+ h− ws−wr
µ−Λ

Λ
µ

(
1− (Λ/µ)

Λ/γ
)

and h ≤ ȟΛ :=
(
ws
µ
− wr

µ−Λ

)
Λ
µ

(
1− (Λ/µ)

Λ/γ
)

, which provides the region where pe = 1 and

λe = Λ is an equilibrium strategy.

Case 4: pe = 1 and λe = λ1 <Λ. Where λ1 (see below for proof of existence and unique-

ness) is such that 0 = v − h + wrT̄rr(1, λ1) + wsT̄rs(1, λ1) so that customers are indiffer-

ent between balking, and joining and being flexible. In terms of model primitives, this

indifference can be expressed as v = ws
µ−λ1

+ h− ws−wr
µ−λ1

λ1

µ

(
1− (λ1/µ)

λ1/γ
)

. For this to be an

equilibrium it must be either that Λ ≥ µ or v < h+ wrT̄rr(1,Λ) + wsT̄rs(1,Λ), so that if

all customers join and are flexible there would be incentive for some to balk, and h +

wrT̄rr(1, λ1) +wsT̄rs(1, λ1)≤wsT̄ss(1, λ1) so that customers have no incentive to be inflexi-
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ble. These conditions are respectively equivalent to either Λ≥ µ or v < v̂1 and h≤ ȟλ1 :=(
ws
µ
− wr

µ−λ1

)
λ1

µ

(
1− (λ1/µ)

λ1/γ
)

, which provides the region where pe = 1 and λe = λ1 is an

equilibrium strategy.

Existence and uniqueness of λ1. To see that λ1 exists and is unique, note that for

any λ< µ,

d

dλ

[
ws
µ−λ +h− ws−wr

µ−λ
λ

µ

(
1−

(
λ

µ

)λ
γ

)]
=

ws
(µ−λ)2

− (ws−wr)
(

1

(µ−λ)2

(
1−

(
λ

µ

)λ
γ

)
− λ

µ(µ−λ)

((
λ

µ

)λ
γ 1

γ

(
1 + ln

λ

µ

)))
,

and that λ/µ> e−1 ≈ .368 is sufficient for this to be positive, which we have by assumption.

Therefore, if v ≤ v̌1, then λ1 must exist, and the monotonicity ensures λ1 is unique when

it exists.

Case 5: 0< pe = p̃ < 1 and λe = Λ. Where p̃ (see below for proof of existence and

uniqueness) is such that v − wsT̄ss(p,Λ) = v − h+ wrT̄rr(p,Λ) + wsT̄rs(p,Λ) so that cus-

tomers are indifferent between joining and choosing to be inflexible vs being flexible when

all customers join. In terms of model primitives, this indifference can be expressed as h=(
ws
µ
− wr

µ−Λ

)
Λ
p̃µ

(
1− (Λ/µ)

p̃Λ/γ
)

. For this to be an equilibrium it must be that Λ<µ and v≥
wsT̄ss(p̃,Λ) so that customers have no incentive to balk when everyone joins and a propor-

tion p̃∈ (0,1) are flexible, and that wsT̄ss(p,Λ) = h+wrT̄rr(p,Λ)+wsT̄rs(p,Λ) so customers

are indifferent between choosing to be flexible and inflexible. The region where pe = p̃ and

λe = Λ is an equilibrium strategy, is when Λ<µ, v≥ v̂p := ws
µ−Λ

(
1− (Λ/µ)2

(
1− (Λ/µ)

p̃Λ/γ
))

,

and ȟΛ < h < ĥΛ, where this last pair of inequalities is derived in the proof of existence

and uniqueness below.

Existence and uniqueness of p̃. Such a p̃ will exist (and be unique) if h ∈ [ĥΛ, ȟΛ]

because
(
ws
µ
− wr

µ−Λ

)
Λ
pµ

(
1− (Λ/µ)

pΛ/γ
)

is decreasing in p (see B.3.5), from ĥΛ (when p= 0)

to ȟΛ (when p= 1).

Case 6: 0< pe = p̃ < 1 and λe = λ̃ <Λ. Where (p̃, λ̃) (see below for proof of existence

and uniqueness) are the (p,λ) such that 0 = v−wsT̄ss(p,λ) and 0 = v− (h+wrT̄rr(p,λ) +

wsT̄rs(p,λ)) so that customers are indifferent between balking, joining and being flexible,

and joining and and being inflexible. In terms of model primitives, this can be expressed

as:

v=
ws

µ− λ̃

1−
(
λ̃

µ

)2
1−

(
λ̃

µ

) p̃λ̃
γ


 , (34)

h=

(
ws
µ
− wr

µ− λ̃

)
λ̃

p̃µ

1−
(
λ̃

µ

) pλ̃
γ

 . (35)
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The region where pe = p̃ and λe = λ̃ is an equilibrium strategy, is when either Λ > µ or

v < v̂p, and ȟλ1 <h< ĥλ0, where these inequalities are derived in the proof of existence and

uniqueness below.

Existence and uniqueness of (p̃, λ̃). To see that this system of equations has, at most,

one solution when λ/µ≥ .75 and γ ≥ (µ−λ), assume by contradiction that there exist two

such solutions (p,λ) and (p′, λ′) such that p 6= p̃ and λ 6= λ̃; then,

ws
µ−λ

(
1−

(
λ

µ

)2
(

1−
(
λ

µ

) pλ
γ

))
=

ws
µ−λ′

1−
(
λ′

µ

)2
1−

(
λ′

µ

) p′λ′
γ

 , (36)

(
ws
µ
− wr
µ−λ

)
λ

pµ

(
1−

(
λ

µ

) pλ
γ

)
=

(
ws
µ
− wr
µ−λ′

)
λ′

p′µ

1−
(
λ′

µ

) p′λ′
γ

 . (37)

Without loss of generality assume λ < λ′. Now we will come to a contradiction that

(36) implies that p′ > p while (37) implies that p′ < p. To see that (36) implies that p′ > p,

observe that the right-hand side of (34) is increasing in λ and decreasing in p (see B.3.2

and B.3.3). Therefore, since λ < λ′, for (36) to hold it must be that p′ > p. To see that

(37) implies that p′ < p, observe that when λ
µ
> .75 and γ > µ− λ the right-hand side of

equation (35) is decreasing in λ and decreasing in p (see B.3.4 and B.3.5). Therefore, since

λ< λ′, for (37) to hold it must be that p′ < p. Hence we have contradiction, and therefore,

at most one solution exists.

To see the inequalities v < v̂p and ȟλ1 < h < ĥλ0 imply that a solution exists, observe

that v < v̂p implies that, if everyone joins and customers are indifferent between choosing

to be flexible and inflexible, then customers have incentive to balk. Since the right-hand

side of (34) is increasing in λ, for any p ∈ (0,1) there exists a unique λp < Λ such that

v = ws
µ−λp

(
1− (λp/µ)2

(
1− (λp/µ)

pλp/γ
))

. Note, this implies λp is increasing in p because the

right-hand side is decreasing in p. Lastly, observing that
(
ws
µ
− wr

µ−λp

)
λp
pµ

(
1− (λp/µ)

pλp/γ
)

is

decreasing in both p and λp from ĥλ0 (when p = 0 and λ = λ0) to ȟλ1 (when p = 1 and

λ= λ1), the fact that ȟλ1 <h< ĥλ0 ensures the existence of a unique solution for the double

(p̃, λ̃).

Cases 1-6 are mutually exclusive and collectively exhaustive. By the fact that

the regions given in cases 1-6 are collectively exhaustive in the space of v and h, it must

be that at least one case applies. By the fact that the regions given in cases 1-6 are also

mutually exclusive, it must be that one, and only one, case applies. Therefore, by the fact

that each case has a unique potential equilibrium, and that one, and only one case applies,

we have that the equilibrium exists and is unique.

The supporting monotonicity results for Parts i and ii.

B.3.2. Monotonic non-decreasing behavior of the RHS of (34) in λ
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d

dλ

[
ws
µ−λ

(
1−

(
λ

µ

)2
(

1−
(
λ

µ

) pλ
γ

))]
=ws

d

dλ

[
µ+λ

µ2
+

1

µ−λ

(
λ

µ

)2(
λ

µ

) pλ
γ

]
(38)

=ws

[
1

µ2
+

(
λ

µ

) pλ
γ
(
λ(2µ−λ)

µ2(µ−λ)2
+

λ2

µ2(µ−λ)

[
p

γ

(
1 + ln

λ

µ

)])]

A sufficient condition for this to be positive is 1+ln λ
µ
> 0 or λ

µ
> e−1 ≈ .368, which we have

by assumption.

B.3.3. Monotonic non-increasing behavior of the RHS of (34) in p

d

dp

[
ws
µ−λ

(
1−

(
λ

µ

)2
(

1−
(
λ

µ

) pλ
γ

))]
=

ws
µ−λ

(
λ

µ

)2(
λ

µ

) pλ
γ λ

γ

(
ln
λ

µ

)
(39)

Which is negative because
(

ln λ
µ

)
< 0.

B.3.4. Monotonic non-increasing behavior of the RHS of (35) in λ

d

dλ

[(
ws
µ
− wr
µ−λ

)
λ

pµ

(
1−

(
λ

µ

) pλ
γ

)]
=

− wr
(µ−λ)2

λ

pµ

(
1− ρ

pλ
γ

)
+

(
ws
µ
− wr
µ−λ

)
1

pµ

[
1− ρ

pλ
γ − pλ

γ
ρ
pλ
γ (lnρ+ 1)

]
(40)

Note, we are only interested in the case where (35) holds, therefore we consider the

case where
(
ws
µ
− wr

µ−λ

)
> 0. The first term of the derivative is non-positive and a sufficient

(but not necessary) condition for the second term to also be non-positive is that the sub-

term in square brackets is non-positive. The term in square brackets is non-positive if
γ
pλ

(
ρ−

pλ
γ − 1

)
≤ lnρ + 1. Note γ

pλ

(
ρ−

pλ
γ − 1

)
is decreasing in γ and increasing in p, the

relevant derivatives are:

d

dγ

[
γ

pλ

(
ρ−

pλ
γ − 1

)]
=

1

pλ

[
ρ−

pλ
γ

(
1 +

pλ

γ
lnρ

)
− 1

]
,

and
d

dp

[
γ

pλ

(
ρ−

pλ
γ − 1

)]
=− γ

p2µ

[
ρ−

pλ
γ

(
1 +

pλ

γ
lnρ

)
− 1

]
.

To establish the sign of these derivatives we need to establish the sign of the term in

brackets. The term in brackets is non-positive if lnρ
pλ
γ ≤ ρ

pλ
γ −1, or equivalently lnx≤ x−1,

which is true for all x∈ [0,1]. Therefore, in the domain p≤ 1 and (µ−λ)/γ ≤ 1, the left-hand

side is maximized at p= 1 and γ = µ−λ.

Given this, we establish that
[
1− ρ

pλ
γ − pλ

γ
ρ
pλ
γ (lnρ+ 1)

]
is non-positive if

1−ρ
ρ

(
ρ−

ρ
1−ρ − 1

)
≤ lnρ+ 1, which is true for all ρ∈ (.676,1), yielding the result.
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B.3.5. Monotonic non-increasing behavior of the RHS of (35) in p

d

dp

[(
ws
µ
− wr
µ−λ

)
λ

pµ

(
1−

(
λ

µ

) pλ
γ

)]
=−

(
ws
µ
− wr
µ−λ

)
1

p2

λ

µ

[
1−

(
λ

µ

) pλ
γ

+

(
λ

µ

) pλ
γ

ln

((
λ

µ

) pλ
γ

)]
(41)

Note, we are only interested in the case where (35) holds, therefore we consider the case

where
(
ws
µ
− wr

µ−λ

)
> 0. Substituting x = (λ/µ)pλ/γ into the term in brackets, this term is

positive because 1−x+x lnx≥ 0 for all x∈ [0,1]. Therefore, (41) is negative.

B.3.6. Part ii. Note that in cases 1 and 3, pe and λe are fixed, thus it suffices to

check cases 2, 4, 5, and 6. For notational convenience let the right-hand side of (34) be

denoted as α, the right-hand side of (35) be denoted as β, and the right-hand side of

v =

[
ws
µ−λe +h− ws−wr

µ−λe
λe
µ

(
1−

(
λe
µ

)λe
γ

)]
be denoted as δ. Note that ∂α

∂λ
, ∂δ
∂λ

are positive, by

B.3.2 and the analysis in case 4 used to show λ1 is unique, respectively. Also, ∂α
∂p
, ∂β
∂λ
, ∂β
∂p

are

all negative by B.3.3,B.3.4 and B.3.5, respectively.

B.3.7. Part ii.a Comparative statics with respect to h. newline

Case 2: pe = 0 and λe <Λ. Then, v = α which is independent of h when p= 0, thus dλ
dh

equals zero.

Case 4: pe = 1 and λe < Λ. Then, v = δ, and taking the derivative with respect to h

yields, 0 = 1 + ∂δ
∂λ

dλ
dh

. This implies that dλ
dh

is negative because ∂δ
∂λ

is positive.

Case 5: pe =∈ (0,1) and λe = Λ. Then h= β, and taking the derivative with respect to

h yields, 1 = ∂β
∂h

+ ∂β
∂p

dp
dh

. This implies that dp
dh

is negative because ∂β
∂h

equals zero, and ∂β
∂p

is

negative.

Case 6: pe =∈ (0,1) and λe <Λ. Then v = α and h= β, and taking the derivative with

respect to h yields,

0 =
∂α

∂h
+
∂α

∂λ

dλ

dh
+
∂α

∂p

dp

dh
, (42)

1 =
∂β

∂h
+
∂β

∂λ

dλ

dh
+
∂β

∂p

dp

dh
. (43)

Equation (42) implies that dλ
dh

and dp
dh

are of the same sign (both are positive or both are

negative) because ∂α
∂h

equals zero, so ∂α
∂λ

dλ
dh

=−∂α
∂p

dp
dh

, and ∂α
∂p

is negative, and ∂α
∂λ

is positive.

Equation (43) implies both dp
dh

and dλ
dh

must be negative because ∂β
∂h

= 0 and both ∂β
∂λ

and
∂β
∂p

are negative.

Comparative statics with respect to wr. newline

Case 2: pe = 0 and λe < Λ. Then, v = α which is independent of wr when p= 0, thus
dλ
dwr

equals zero.

Case 4: pe = 1 and λe < Λ. Then, v = δ, and taking the derivative with respect to wr
yields, 0 = ∂δ

∂wr
+ ∂δ

∂λ
dλ
dwr

. This implies that dλ
dwr

is negative because ∂δ
∂wr

and ∂δ
∂λ

are positive.

Case 5: pe ∈ (0,1) and λe = Λ. Then h= β, and taking the derivative with respect to wr
yields, 0 = ∂β

∂wr
+ ∂β

∂p
dp
dwr

. This implies that dp
dwr

is negative because ∂β
∂wr

and ∂β
∂p

are negative.
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Case 6: pe ∈ (0,1) and λe < Λ. Then v = α and h= β, and taking the derivative with

respect to wr yields,

0 =
∂α

∂wr
+
∂α

∂λ

dλ

dwr
+
∂α

∂p

dp

dwr
, (44)

0 =
∂β

∂wr
+
∂β

∂λ

dλ

dwr
+
∂β

∂p

dp

dwr
. (45)

Equation (44) implies that dλ
dwr

and dp
dwr

are of the same sign (both are positive or both

are negative) because ∂α
∂wr

equals zero, so ∂α
∂λ

dλ
dwr

= −∂α
∂p

dp
dwr

, and ∂α
∂λ

is positive and ∂α
∂p

is

negative. Equation (45) implies both dp
dwr

and dλ
dwr

must be negative because ∂β
∂wr

, ∂β
∂λ

, and
∂β
∂p

are all negative.

B.3.8. Part ii.b Comparative statics with respect to v. newline

Case 2: pe = 0 and λe < Λ. Then, v = α, and taking the derivative with respect to v

yields 1 = ∂α
∂v

+ ∂α
∂λ

dλ
dv

. This implies dλ
dv

is positive because ∂α
∂λ

is positive and ∂α
∂v

equals zero.

Case 4: pe = 1 and λe < Λ. Then, v = δ, and taking the derivative with respect to v

yields 1 = ∂δ
∂v

+ ∂δ
∂λ

dλ
dv

. This implies that dλ
dv

is positive because ∂δ
∂λ

is positive (as shown in

analysis of case 4) and ∂δ
∂v

equals zero.

Case 5: pe =∈ (0,1) and λe = Λ. Then h= β, and taking the derivative with respect to

v yields 0 = ∂β
∂v

+ ∂β
∂p

dp
dv

. This implies that dp
dv

= 0 because ∂β
∂v

= 0 and ∂β
∂p
< 0.

Case 6: pe =∈ (0,1) and λe <Λ. Then v = α and h= β, and taking the derivative with

respect to v yields,

1 =
∂α

∂v
+
∂α

∂λ

dλ

dv
+
∂α

∂p

dp

dv
, (46)

0 =
∂β

∂v
+
∂β

∂λ

dλ

dv
+
∂β

∂p

dp

dv
. (47)

Noting that ∂α
∂v

= ∂β
∂v

= 0, solving (47) for dλ
dv

and substituting into the first equation yields:

1 =

(
−∂α
∂λ

∂β
∂p

∂β
∂λ

+
∂α

∂p

)
dp

dv
. (48)

Since ∂α
∂λ

is positive,
∂β
∂p/∂β∂λ is positive ( negative divided by a negative), and ∂α

∂p
is negative, it

must be that dp
dv

is negative. Given that dp
dv

is negative, (46) then implies that dλ
dv

is positive

because dβ
dv

equals zero, ∂β
∂p

dp
dv

is positive, and ∂β
∂λ

is negative.

B.3.9. Part ii.c Comparative statics with respect to ws. newline

Case 2: pe = 0 and λe < Λ. Then, v = α, and taking the derivative with respect to ws
yields 0 = ∂α

∂ws
+ ∂α

∂λ
dλ
dws

. This implies that dλ
dws

is negative because, ∂α
∂ws

and ∂α
∂λ

are positive.

Case 4: pe = 1 and λe < Λ. Then, v = δ, and taking the derivative with respect to ws
yields, 0 = ∂δ

∂ws
+ ∂δ

∂λ
dλ
dws

. This implies that dλ
dws

is negative because ∂δ
∂ws

and ∂δ
∂λ

are positive.

Case 5: pe ∈ (0,1) and λe = Λ. Then h= β, and taking the derivative with respect to

ws yields, 0 = ∂β
∂ws

+ ∂β
∂p

dp
dws

. This implies that dp
dws

is positive because ∂β
∂ws

is positive and ∂β
∂p

are negative.
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Case 6: pe ∈ (0,1) and λe < Λ. Then v = α and h= β, and taking the derivative with

respect to ws yields,

0 =
∂α

∂ws
+
∂α

∂λ

dλ

dws
+
∂α

∂p

dp

dws
, (49)

0 =
∂β

∂ws
+
∂β

∂λ

dλ

dws
+
∂β

∂p

dp

dws
. (50)

Solving (49) for dp
dws

and substituting into (50) yields,

∂β

∂p

∂α
∂ws
∂α
∂p

− ∂β

∂ws
=

(
∂β

∂λ
− ∂β
∂p

∂α
∂λ
∂α
∂p

)
dλ

dws
. (51)

The term in parenthesis on the right-hand side is negative (negative minus a positive)

because ∂β
∂λ

, ∂β
∂p

, and ∂α
∂p

are negative and ∂α
∂λ

is positive. Hence, given the sign of the left-hand

side, then dλ
dws

has the oppositive sign.

The left-hand side (positive minus a positive) is a negative if, ∂β
∂ws

> ∂β
∂p

∂α
∂ws
∂α
∂p

, which

expressed in terms of model primitives is equivalent to:

1

µ

(
1−

(
λ

µ

) pλ
γ

)
≥
(

1

µ
− wr
ws(µ−λ)

)[
1−

(
λ

µ

) pλ
γ

+

(
λ

µ

) pλ
γ

ln

((
λ

µ

) pλ
γ

)] (1−
(
λ

µ

)2
(

1−
(
λ

µ

) pλ
γ

))
(
λ

µ

)2(
λ

µ

) pλ
γ

(
− ln

(
λ

µ

) pλ
γ

) .
(52)

Observe that, if this inequality holds for the case when wr = 0, it is true for all wr > 0

because the right-hand side is decreasing in wr. To see this note that all the terms multiplied

by wr are positive, to see the term in brackets is positive, let x= (λ/µ)pλ/γ and note that

1− x+ x lnx > 0, ∀x ∈ [0,1]. Hence, letting wr = 0 and substituting x in for notational

convenience the inequality reduces to,

(λ/µ)2 ≥ 1−x(1− lnx)

(1−x)(1−x lnx)
(53)

The right-hand side is decreasing in x, therefore if this inequality holds when p = 1 and

γ = µ−λ it holds for all p∈ [0,1] and all γ > µ−λ. Hence, letting x= (λ/µ)
pλ
γ → (λ/µ)

λ
µ−λ =

ρ
ρ

1−ρ we have the result when

ρ2 ≥ 1− ρ
ρ

1−ρ (1− lnρ
ρ

1−ρ )

(1− ρ
ρ

1−ρ )(1− ρ
ρ

1−ρ lnρ
ρ

1−ρ )
. (54)

A sufficient condition for this inequality to hold is ρ > .5 which we have by assumption.

Hence dλ
dws

> 0.
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Given dλ
dws

> 0, (49) implies that dp
dws

is positive. To see this observe
(
∂α
∂ws

)
is positive,(

∂α
∂λ

dλ
dws

)
is the product of two positives, therefore the third term must be negative, and

since ∂α
∂p

is negative, it must be that dp
dws

is positive.

B.4. Proof of Proposition 5

We first show that Λ
µ
∈ [.75,1), v > 16ws/µ, γ ≥

√
µws/v imply that λso > .75µ, and λso ≥ µ−γ,

which we use in the proof below. First, if no customers can be flexible (p= 0), the socially

optimal arrival rate is λ0
so := min{Λ, µ−

√
wsµ
v
} (see (Hassin and Haviv 2003, Chapter 3,

Section 1.2) for the details). Given this, a little algebra shows that, in this case, if Λµ≥ .75

then, v > 16ws/µ implies λ0
so ≥ 0.75µ and γ ≥

√
µws/v implies λ0

so ≥ µ−γ. Therefore, as long

as a central planner, given the option to dictate customer flexibility p ∈ [0,1] in addition

to the arrival rate λ, would not dictate fewer customers join than in the case when p

is restricted to zero, we have the preliminary result. This is obvious as proactive service

enables a provider to reduce delays while serving the same amount of customers (because

delays are decreasing in p), thus, given the option to dictate flexibility, it can never be

optimal to serve fewer customers as it would be dominated by the case where the same

number of customers are served as the benchmark case and some positive proportion of

customers are flexible. Therefore, for any socially optimal proportion of flexible customers

and socially optimal arrival rate (pso, λso) we have that λso > .75µ, and λso ≥ µ− γ.

B.4.1. Part 1: We next prove that λso ≤ λe. We do it by showing that λso ≤ λ0 ≤ λe,
where λ0 = min{Λ, µ− ws

v
} is the equilibrium arrival rate when the proportion of flexible

customers is fixed at zero, and the second inequality follows from the fact that the equi-

librium arrival rate (λe) is no smaller than λ0 (see the preliminary result in the proof of

Proposition 4). Note in the case where λe = λ0 = Λ, the inequality is trivially satisfied,

therefore we will focus on the case where λ0 = µ− ws
v
<Λ. To prove the first inequality we

show that, for any fixed p, the partial derivative of the welfare function (7) with respect

to λ (given below), is negative for all λ≥ λ0.

∂

∂λ
W (p,λ) =

A︷ ︸︸ ︷
v− ws

µ−λ −

B︷ ︸︸ ︷(
ph+

wr
(µ−λ)2

λ(2µ−λ)

µ

(
1−

(
λ

µ

) pλ
γ

)
+
ws−wr
µ−λ

λ

µ

(
λ

µ

) pλ
γ pλ

γ

(
1 + ln

λ

µ

))

(55)

− wsλ

(µ−λ)2

[
1− (2µ−λ)

µ

(
1−

(
λ

µ

) pλ
γ

)]
︸ ︷︷ ︸

C

(56)

To show that this derivative is negative if λ≥ λ0 we show that A is non-positive, and B

is non-negative (-B is non-positive) and C is positive (-C is negative). To see that A is

non-positive observe that v − ws
µ−λ0

= 0, therefore for λ≥ λ0 this term is non-positive. To
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see that B is non-negative, note the first two terms within B are trivially non-negative

and that λ/µ> e−1 is a sufficient condition for the third term to be non-negative which we

have by assumption, therefore B is non-negative. To see that −C is negative, observe that

this is true when the term within the square brackets is positive. Noting that the term in

brackets is decreasing in p, letting p= 1 minimizes this term and therefore, as long as it

is positive when p= 1, it is positive for all p ∈ [0,1]. Further noting that term in brackets

is increasing in γ then letting γ = µ− λ minimizes this term (note from the assumption

that γ ≥
√

µws/v, and v >ws/µ we have that γ ≥
√

µws/v≥
√

w2
s/v2 = ws/v = µ−λ0, therefore

for all λ ≥ λ0 we have that γ ≥ µ− λ). With these substitutions for p and γ, the term

in brackets is positive if 1− (2− ρ)
(

1− ρ
ρ

1−ρ

)
is positive. Observing this is true for all

ρ∈ [0,1] we have the result that λso ≤ λe.
B.4.2. Part 2: Now we show that pso ≥ pe. Fix λ > 0. The partial derivative of the

welfare function (given by equation 7) with respect to p is

∂

∂p
W (p,λ) =−λ(h− ξ(p,λ)) (57)

where

ξs(p,λ) =
ws−wr
µ−λ

(
λ2

γµ

(
λ

µ

) pλ
γ
(
− ln

λ

µ

))
, (58)

The second partial derivative of W (p,λ) with respect to p is −ws−wr
µ−λ

(
λ4

γ2µ

(
λ

µ

) pλ
γ (

ln λ
µ

)2
)

,

which is non-positive by the assumption that wr ≤ws. Therefore, for fixed λ ∈ (0,Λ], the

welfare function is concave with respect to p. Let pso(λ) denote the proportion of flexible

customers that maximizes the welfare function when the arrival rate is λ.

By concavity of the welfare function, for fixed λ if (57) is positive when p= 1, i.e.,

h≤ ξs(1, λ) (59)

then pso(λ) = 1, i.e., it is social optimal for everyone to be flexible.

Now consider unregulated customer equilibrium where cr = cs = 0 and λ is fixed. Taking

the difference in the utility of inflexible and flexible customers (given by v− cs−wsT̄ss and

v− cr−h−wrT̄rr−wsT̄rs respectively), we have (after some algebra) that if

h> ξe(p,λ) :=

(
ws
µ
− wr
µ−λ

)
1

µ−λT̄rr(p,λ), (60)

then the utility of inflexible customers is greater than that of flexible customers. Since T̄rr
is decreasing in the proportion of flexible customers p (which follows from the approxi-

mation given in (5)), if h≥ ξe(0, λ), then choosing to be flexible is a dominated strategy.

Substituting the approximation of T̄rr given by (5) into 60 and applying L’Hôpital’s rule,

flexibility is dominated in equilibrium (for fixed λ) if,

h≥ ξe(0, λ) (61)
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where

ξe(0, λ) =

(
ws
µ
− wr
µ−λ

)
λ2

γµ

(
− ln

λ

µ

)
. (62)

We prove below that if γ ≥ µ−λ and λ
µ
≥ .75,

ξs(1, λ)≥ ξe(0, λ). (63)

This together with the fact that ξe is decreasing in λ (see B.3.4) and the fact that λso <λe
(from Part 1 above), implies that

ξs(1, λso)≥ ξe(0, λso)≥ ξe(0, λe). (64)

Then the desired result follows by setting
¯
h := ξe(0, λe) and h̄ := ξs(1, λso).

To complete the proof, we now prove (63). We note that (63) is (after some algebra)

equivalent to

ρ
λ
γ >

ws (1− ρ)−wr
ws−wr

. (65)

Because LHS of this inequality is increasing in γ,

ρ
λ
γ ≥ ρ λ

µ−λ (66)

under the assumption γ ≥ µ−λ. Additionally, the RHS is decreasing in wr, hence

ws (1− ρ)−wr
ws−wr

≤ ws (1− ρ)

ws
(67)

Therefore (65) holds if ρ+ ρ
ρ

1−ρ > 1 and the latter holds for all ρ > .5. Since we assume

that λ/µ≥ 0.75, we have (63).

C. Application to Induction of Labor
This Appendix presents a numerical illustration of the model of proactive service for the

case of induction of labor, a medical procedure performed at large UK-based maternity

hospital, that motivated this work. The management of the hospital wanted to tackle delays

in induction of labor (IOL), where childbirth is pharmacologically initiated in specialized

beds on the antenatal (pre-birth) ward. This procedure takes 12–36 hours to complete

and is medically indicated for overdue or higher-risk pregnancies. Although some patients

in need of emergency induction arrive to the ward with little advance warning, for many

patients, IOL is booked by community midwives anytime between one to seven days in

advance. Demand for the procedure is highly variable and so are service times, leading to

significant delays in starting the process – in some cases patients needed to wait up to

3–4 days. Such delays are not only unpleasant for the patients but also increase the risk

of medical complications. One way to tackle these unpleasant waiting times would be to
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increase capacity (e.g., beds and staffing), at least at times when demand is high. Nev-

ertheless, financial, human resource, and space constraints made this approach infeasible.

Instead, the maternity hospital contemplated an alternative approach: call patients in to

undergo IOL proactively when there were available beds. Bringing the procedure forward

by 1-2 days is considered medically safe for patients who are overdue (Royal College of

Obstetricians and Gynaecologists 2008, pg.8). Since a large proportion of the patients live

within a short distance of their planned birth hospital, it was also considered practical,

especially if the expecting mothers were told to be prepared for the event.

We calibrate model parameters from hospital data to estimate the potential benefits

of proactive service in this setting. The hospital has m = 5 beds specially equipped and

reserved for IOL patients. The arrival rate for induction patients is λ= 3.97 per day. Precise

data (e.g., time stamps) is not available for waiting times and service times, but on average,

patients spend 2 days in the antenatal ward. Imputation using M/M/m queueing formulas

suggests that the average service time would be approximately µ−1 = 25.66 hours8. The

average bed utilization is 85%, which is consistent with a busy hospital unit. We take the

average information lead time to be γ−1 = 1 days as the hospital does not want to bring

forward patients’ procedures by too much. From data we estimate that the probability that

the delivery takes place naturally (i.e., without induction) on the next day conditional on

the expecting mother being in or beyond the 39th week of pregnancy to be 8.3%. Therefore,

we estimate the performance of the system, including the extension where customers who

are served proactively may not actually have needed the service, i.e., the case of imperfect

information with q = .917. Note that this means the approximation for T̄rs is the same as

that for T̄ss (see §5.2).

Figure 10 Delays for Induction of Labor where λ= 3.97, µ= .935, γ = 1,m= 5, q= 0.917
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Figure 10 illustrates the operational benefits in terms of reduction in time spent on the

8 In practice, IOL starts at specific points in time (usually at 8am and 3pm). We abstracted from this starting-time
batching as it would further complicate the analysis. Due to this, our results may be viewed as an upper bound on
the value of proactive service.
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antenatal ward for varying levels of adoption of proactive service (p). The average time

patients spend on the service queue in the benchmark case without proactive service is 2

days (of which approximately .93 days is waiting and 1.07 days is service). If all customers

were flexible, the length of stay at the antenatal unit is reduced to 1.74 days and the

reduction to delays ahead of service is 28%. Furthermore, we note that the results based on

the multiserver approximation modified to include proactive service closely match those of

a simulation model. Finally, we note that, although the model is highly stylized and these

numbers are likely to overestimate the benefit of proactive service (e.g., the model assumes

that the hospital would could call expecting mothers to be induced even late at night),

these results suggest that it may be an effective way to reduce delays without requiring

additional capacity9.

We next investigate whether patients would be willing to participate in proactive service.

For the purposes of this application we assume the demand rate is exogenous to delays, a

realistic assumption in this setting. Normalizing the cost of time spent on the antenatal

ward to one unit per day (i.e., ws = 1) and assuming that waiting in orbit, which in this

case is equivalent to waiting at home, is costless (i.e., wr = 0), then the equilibrium strategy

is for all patients to adopt if the fixed cost of flexibility h < .0596 (i.e., less than the cost

of about 85 minutes waiting on the unit), and no patient will adopt if h > .0701 (i.e.,

more than the cost of 100 minutes waiting on the unit). In contrast, the central planner

would have dictated that all patients adopt if h< .25. These findings suggest that it may

well be the case that the maternity hospital is in the inefficient region where all patients

would benefit if they agreed to be flexible, but fewer patients than optimal actually do

so. These results suggest that the management of the hospital should be cautious before

implementing proactive service. Hence, they should engage in a discussion with patients

to understand how willing they would be to participate in a flexible scheduling policy for

inductions.

9 We note that a more detailed simulation-based analysis of the unit that captures a number of features that go beyond
this stylized study, such as batching, estimates that proactive service can reduce waiting times by approximately 25%.
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