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The problem of determining nurse staffing levels in a hospital environment is a complex task because of
variable patient census levels and uncertain service capacity caused by nurse absenteeism. In this paper, we

combine an empirical investigation of the factors affecting nurse absenteeism rates with an analytical treatment
of nurse staffing decisions using a novel variant of the newsvendor model. Using data from the emergency
department of a large urban hospital, we find that absenteeism rates are consistent with nurses exhibiting an
aversion to higher levels of anticipated workload. Using our empirical findings, we analyze a single-period
nurse staffing problem considering both the case of constant absenteeism rate (exogenous absenteeism) as well
as an absenteeism rate that is a function of the number of nurses scheduled (endogenous absenteeism). We pro-
vide characterizations of the optimal staffing levels in both situations and show that the failure to incorporate
absenteeism as an endogenous effect results in understaffing.
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1. Introduction and Literature Review
In recent years hospitals have been faced with increas-
ing pressure from their major payers—federal and
state governments, insurers, and large employers—
to cut costs. Because nursing personnel account for
a very large portion of expenses, the response in
many instances has been reductions of the nursing
staff. Nurse workloads have been further increased
by shorter hospital lengths of stay and increasing
use of outpatient procedures, resulting in sicker hos-
pitalized patients who require more nursing care.
The adverse impact of these changes has been docu-
mented by a number of studies and include increases
in medical errors, delays for patients waiting for
beds in emergency rooms, and ambulance diversions
(Needleman et al. 2002, Aiken et al. 2002, Cho et al.
2003). In response, a number of state legislatures,
for example, Victoria in Australia and California in
the United States, have mandated minimum nurse
staffing levels (Gordon et al. 2008).

Establishing the appropriate nursing level for a par-
ticular hospital unit during a specific shift is com-
plicated by the need to make staffing decisions well
in advance (e.g., six to eight weeks) of that shift, as

well as labor constraints dealing with the number of
consecutive and weekend shifts worked per nurse,
vacation schedules, personal days, and preferences
(see, e.g., Miller et al. 1976, Wright et al. 2006). Adding
to these complexities is the prevalence of nurse absen-
teeism. According to the U.S. Bureau of Labor Statis-
tics (2008), in 2008 U.S. nurses exhibited the highest
number of incidents of illness or injury involving
days away from work, 7.8 per 100 FTEs, substantially
higher than the national average of 2.1 incidents per
100 FTEs. The goal of this paper is to construct a
model for nurse staffing that includes the impact of
absenteeism and investigate whether and how clini-
cal units should take it into consideration when they
make staffing level decisions. To do this, we must first
understand whether and how absenteeism is affected
by staffing levels themselves. Because, to the best of
our knowledge, there is no literature that adequately
addresses this linkage, we first conduct an empirical
hospital-based study to understand how to incorpo-
rate absenteeism into an analytical model.

Most studies on nurse absenteeism find that it is
positively related to levels of work-related stress
(Shamian et al. 2003) and nurse workload (Bryant
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et al. 2000, Tummers et al. 2001, McVicar 2003, Unruh
et al. 2007). However, at least one study examining
absenteeism among trainee nurses finds a negative
correlation between nurse absenteeism and work-
load (Parkes 1982). Nearly all of the existing studies
of nurse absenteeism use qualitative or self-reported
measures of workload and cross-sectional analyses
of this phenomenon (see Rauhala et al. 2007 for
an exception). In particular, they compare the long-
run absenteeism behavior of nurses across different
clinical units, rather than tracking the same set of
nurses over time. As such, these studies are of limited
value to managers responsible for day-to-day staffing
decisions.

The first part of our paper presents a longitudi-
nal investigation of the link between nurse absen-
teeism and workload using data from the emergency
department (ED) of a large New York City hospi-
tal. Rather than relying on subjective self-reported
workload measures, we use patient census values to
calculate nurse-to-patient ratios that are treated as
proxies for the workload experienced by nurses work-
ing a particular shift. Nurse shortages and other orga-
nizational limitations (such as union rules) provide
the necessary exogenous variation in staffing deci-
sions that we exploit to identify the impact of work-
load on absenteeism. We hypothesize that fluctuations
in nurse workload due to irregularities in scheduling
and/or unpredictable demand have a direct impact
on absenteeism. An anticipated increase in work-
load could result in an increase in nurses’ motiva-
tion to help their fellow nurses and, therefore, in
decreased absenteeism, or, given generally high work-
loads and adverse working conditions, in increased
absenteeism. In either case, the resulting behavior
may result in optimal nurse staffing levels that are
different from those predicated by models that do
not consider this workload-induced behavior. There-
fore, our empirical investigation aims to provide sup-
port for one of these specific hypotheses so that we
can incorporate the appropriate assumption into our
analytical modeling. Our main finding is that absen-
teeism increases when there is a higher anticipated
workload. Specifically, we find that for our data set
with an average absenteeism rate of 703%, an extra
scheduled nurse is associated with an average reduc-
tion in the absenteeism rate of 006%. As such, our
paper is related to the growing body of literature
on the effects of workload on system productivity
(KC and Terwiesch 2009, Powell and Schultz 2004,
Powell et al. 2012, Schultz et al. 1999).

The second goal of our paper is to develop a model
of optimal staffing in service environments with
workload-dependent absenteeism. Extant literature
either ignores absenteeism or treats it as an exoge-
nous phenomenon (Bassamboo et al. 2010, Easton and

Goodale 2005, Harrison and Zeevi 2005, and Whitt
2006 provide examples of call-center staffing, whereas
Fry et al. 2006 and He et al. 2012 provide examples
of firefighter and hospital operating room staffing,
respectively). The uncertain supply of service capac-
ity created by nurse absenteeism connects our work
with a stream of literature focused on inventory plan-
ning in the presence of unreliable supply/stochastic
production yield (Yano and Lee 1995) with two impor-
tant distinctions. First, the overwhelming majority of
papers on stochastic supply yields model them as
being either additive or multiplicative (Henig and
Gerchak 1990, Ciarallo et al. 1994, Bollapragada and
Morton 1999, Gupta and Cooper 2005, Yang et al.
2007), a justifiable approach in manufacturing set-
tings. The supply uncertainty in our model has a
binomial structure, a more appropriate choice in per-
sonnel staffing settings. Binomial yield models are
a relative rarity in the stochastic yield literature,
perhaps due to their limited analytical tractability
(Grosfeld-Nir and Gerchak 2004, Fadiloglu et al.
2008). Most importantly, to the best of our knowl-
edge, our analysis is the first to introduce and analyze
endogenous stochastic yields.

Using our model we characterize the optimal
staffing levels under exogenous and endogenous
absenteeism. We show that the failure to incorpo-
rate absenteeism as an endogenous effect results in
understaffing, which leads to a higher-than-optimal
absenteeism rate and staffing costs. Specifically, for
model parameters that closely match the hospital
we study, we find that ignoring the endogenous
nature of absenteeism can lead to a staffing cost
increase of 2% to 3%. In addition to the cost impact,
understaffing associated with ignoring absenteeism
may result in an increase in medical errors, partic-
ularly in the pressured and sensitive environment
of an ED. Considering that nursing costs is one of
the biggest components of overall hospital operating
costs, more accurate nurse staffing based on endoge-
nous absenteeism constitutes a substantial opportu-
nity for hospitals to simultaneously reduce costs and
improve quality of care.

Finally, we show that despite understaffing, the
exogenous-absenteeism model will appear to be self-
consistent in the sense that the assumed exoge-
nous absenteeism rate will be equal to the observed
(endogenous) absenteeism rate. This is particularly
worrisome for staffing managers because it implies
that it is impossible to tell whether the model is well
specified just by examining the observed absenteeism
rate. In this regard, our paper contributes to the lit-
erature on model specification errors in operations
(e.g., Cachon and Kök 2007, Cooper et al. 2006, Lee
et al. 2012, Mersereau 2012). In this literature, as in
our paper, the model specification error cannot be
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detected by studying data as the misspecified model
will produce consistent outcomes. To the best of our
knowledge, our paper is the first to study model spec-
ification error in the context of staffing, and the first
in the model specification literature to start from an
empirical observation.

2. Endogeneity in Nurse Absenteeism
Rates: An Empirical Study

Our study is based on nurse absenteeism and patient
census data from the ED of a large New York
City hospital. Nurses employed in this unit are
full-time employees, each working on average 3.25
shifts per week. The unit uses two primary nursing
shifts: the day shift starts at 8:00 a.m. and ends at
8:00 p.m.; the night shift starts at 8:00 p.m. and ends at
8:00 a.m. Another (evening) shift is also operated from
12:00 p.m. to 12:00 a.m. For each shift, for a period
of 10 months starting on July 1, 2008 (304 day shifts,
304 evening shifts, and 303 night shifts), we collected
the following data: the number of nurses scheduled,
the number of nurses absent, the number of patient
visits, and the patient census data recorded every two
hours. The resulting descriptive statistics for three
shifts are presented in Table 1.

In our analysis of absenteeism, we limit our atten-
tion to the nurses on the day and night shifts because
the evening shift is fundamentally different from the
other two. First, the nurses working on this shift do
not work on the other two shifts. Thus, it is less likely
that they are informed about the nurse staffing sched-
ules for the day and night shifts. Second, the evening
shift consists of fewer nurses who are more experi-
enced and exhibit less absenteeism than the other two
shifts, as shown in Table 1. However, we do take into

Table 1 Descriptive Statistics for Nurse and Patient Data

Measure Mean Std. dev. Minimum Maximum

Day shift
Nurses scheduled 11.4 1.07 8 16
Absenteeism rate 0.0762 0.0799 0 0.4
Patient visits 141 20.1 77 188
Average census 116 17.1 56.5 158
Maximum census 136 20.8 64 182

Night shift
Nurses scheduled 10.5 0.849 9 14
Absenteeism rate 0.0707 0.0829 0 0.4
Patient visits 66.0 9.45 40 95
Average census 102 14.2 54.3 142
Maximum census 127 20.4 57 174

Evening shift
Nurses scheduled 3.63 0.756 2 5
Absenteeism rate 0.0589 0.119 0 0.5
Patient visits 137 16.2 75 196
Average census 125 18.6 58.2 164
Maximum census 137 20.7 64 182

account the evening shift when measuring workload
because the evening shift overlaps with both the day
shift and the night shift.

The nurse scheduling process starts several weeks
before the actual work shift when the initial schedule
is established. This initial schedule often undergoes a
number of changes and corrections due to, for exam-
ple, family illnesses, medical appointments, and jury
duty obligations, which may continue until the day
before the actual shift. In our study, we have used
the final schedules, that is, the last schedules in effect
before any “last minute” absenteeism is reported for
the shift. We record as absenteeism any event where a
nurse does not show up for work without giving suf-
ficiently advance notice for the schedule to be revised.
In the clinical unit we study, nurses are allowed to
use up to 10 personal days per year, which do not
require any significant advance notice. To compen-
sate for absenteeism, the management of the ED uses
either agency nurses or nurses from the previous shift
to work overtime. Therefore, the number of nurses
present to work during any given shift is generally
equal to the number of nurses in the final schedule.1

The average patient census during a shift varies
substantially from day to day. Some of this varia-
tion (5202% for day shifts and 3206% for night shifts)
can be explained by day-of-week and weekly fixed
effects. Furthermore, the patient census exhibits sig-
nificant serial autocorrelation (� = 3006%) with the
values recorded during the previous shift. The num-
ber of nurses scheduled for a particular type of shift,
for example, day shift on a Wednesday, is highly
variable. Approximately 25% of the variation in the
number of nurses scheduled can be explained by day-
of-week and weekly fixed effects (adjusted R2 = 2705%
for the day shift and adjusted R2 = 2401% for the night
shift). Also, after controlling for fixed effects, the num-
ber of nurses scheduled for a shift shows little depen-
dence on either the average patient census during that
shift or on the average census values for the 14 pre-
vious shifts, which correspond to one calendar week.
This indicates that the unit’s nurse staffing policy on
each shift does not seem to be affected in any sig-
nificant way by the realized patient census, over and
above the day-of-week fixed effects.

Our discussions with the ED nurse manager indi-
cated that there are two main factors driving the sig-
nificant variations in the number of scheduled nurses.
First, personnel scheduling is subject to numerous
constraints (e.g., union rules) that often prevent the

1 We note that because of budget constraints, the ED is only allowed
to use agency/overtime nurses to cover for absenteeism and is
not allowed to make use of such expensive resources for routine
staffing. Inquiries with staffing managers in other hospital settings
have suggested that this practice is by no means unique to this
specific ED.
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manager from assigning the number of nurses desired
for a particular shift. Second, as mentioned earlier,
initial schedules often undergo a series of changes
before they are finalized. Such scheduling variations
are not desirable from the point of view of managing
the match between the demand for nursing services
and the supply of nursing capacity, but they provide
an opportunity to examine how absenteeism rates are
related to the numbers of scheduled nurses.

2.1. Nurse Workload and Absenteeism:
Empirical Results

We model the phenomenon of nurse absenteeism as
follows. We treat all nurses as being identical and
independent decision makers and focus on a group
of yt nurses scheduled to work during a particu-
lar shift t (t = 1 for the first shift in the data set,
t = 2 for the second shift, etc., up to t = 607). For
nurse n, n= 11 0 0 0 1 yt , the binary variable Yn1 t denotes
her decision to be absent from work (Yn1 t = 1), or
to be present (Yn1 t = 0). We assume that this absen-
teeism decision is influenced by a number of factors
expressed by the vector xt which include parameters
related to workload as well as fixed effects such as
the day of the week or the shift. Each nurse compares
the utility she receives from being absent from work
to the utility she receives from going to work. The
difference in these utility values is given by U ∗

n1 t =

x′
t� + �n1 t , where �n1 t are, for each n and t, inde-

pendent and identically distributed random variables
with mean zero. Although the utility difference U ∗

n1 t is
an unobservable quantity, we can potentially observe
each nurse’s decision to show up for work. The deci-
sion is such that Yn1 t = 1 if U ∗

n1 t > 0, and Yn1 t = 0
otherwise. Assuming that �n1 t follow the standard-
ized logistic distribution (the standard normal distri-
bution), we obtain the logit (probit) model (Greene
2005). Note that our empirical data do not record the
attendance decisions of individual nurses. Rather, we
measured the aggregate absenteeism behavior of a
group of nurses scheduled for a particular shift. Con-
sequently, we treat all nurses scheduled for a given
shift as a homogeneous group and build the model for
the corresponding group behavior. We examine the
impact of relaxing this assumption in §2.2. We focus
on the maximum-likelihood-based logit estimation of
the probability of absenteeism �t during shift t.

Because our goal is to study how the nurse absen-
teeism rate is affected by workload, we need to mea-
sure and quantify nurse workload for each shift.
We use the nurse-to-patient ratio as a proxy for the
workload nurses experience during a particular shift.
For shift t, we define the nurse-to-patient ratio vari-
able, denoted as NPRt , as the ratio of the number
of nurses working during a particular shift and the
patient census averaged over the duration of that

shift. Therefore, the number of nurses present dur-
ing each 24-hour period varies as follows: Between
8:00 a.m. and 12:00 p.m., it is equal to the number
of nurses scheduled for the day shift (yt); between
12:00 p.m. and 8:00 p.m., it is equal to the number
of nurses scheduled for the day shift (yt) plus the
number of nurses scheduled for the evening shift (et);
between 8:00 p.m. and 12:00 a.m., it is equal to the
number of nurses scheduled for the evening shift (et)
plus the number of nurses scheduled for the night
shift; and between 12:00 a.m. and 8:00 a.m., it is
equal to the number of nurses scheduled for the night
shift (yt). Thus, we estimate NPRt as follows:

NPRt =
yt +

2
3et

Ct

for the day shift1

NPRt =
y+

1
3et

Ct

for the night shift1

(1)

where Ct is the patient census averaged over the dura-
tion of shift t.

In making their attendance decisions for shift t,
nurses may be influenced by the anticipated work-
load for shift t. The impact of anticipated workload
arises because nurses are informed in advance of their
schedule and are aware of how many (and which)
other nurses are scheduled to work on the same shift.
Because nurses anticipate a certain patient census
E6Ct7, consistent with their past experience of work-
ing in the ED, nurses form an expectation about the
anticipated workload for that shift. Naturally, if fewer
(more) nurses are scheduled on that particular shift
than the nurses deem appropriate, they will anticipate
a higher (lower) workload than normal. The group
attendance data do not present a measurement chal-
lenge because nurses scheduled for the same shift are
subjected to the same anticipated workload value.

The anticipated workload can have a dampen-
ing effect on absenteeism through the “pressure-to-
attend” mechanism (Steers and Rhodes 1978) or can
enhance absenteeism by encouraging “withdrawal
behavior” (Hill and Trist 1955, Hobfoll 1989). To the
best of our knowledge, the impact of anticipated
workload on absenteeism has not been previously
studied. We test this potential impact in our setting by
including in the vector of covariates xt the anticipated
value of nurse-to-patient ratio,

ENPR1
t =

yt +
2
3et

E6Ct7
for the day shift1

ENPR1
t =

yt +
1
3et

E6Ct7
for the night shift1

(2)

where et is the number of nurses scheduled in the
evening shift which overlaps with 2

3 ( 1
3 ) of the dura-

tion of the day (night) shift in question. Day- and
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night-shift nurses are fully informed about the sched-
ule for their shifts, but it is not clear that they would
be as familiar with the schedule of the evening shift
staffed by a different pool of nurses. Motivated by this
observation, we estimate two models based on alter-
native definitions of the expected nurse-to-patient
ratio. In the first definition (ENPR1

t of Equation (2)),
we use the exact number of evening nurses sched-
uled (et), whereas in the second definition (ENPR2

t ),
we use the average value of et (averaged over all
evening shifts in our sample). The latter formula-
tion reflects the situation where day- and night-shift
nurses do not know precisely how many evening
nurses will be present but form a rational expectation
about this value. In other words, in the second model,
day- and night-shift nurses behave as if they ignore
any variation in the number of nurses scheduled for
the evening shift that overlaps with their own shift.
The expected patient census values E6Ct7 are com-
puted by averaging the patient census over all shifts
in our sample. This formulation reflects an assump-
tion that nurses, when making their attendance deci-
sions, use a mental model that captures any potential
difference occurring on different days/shifts with a
fixed effect and, therefore, focus on expected patient
census. We also assume that the nurses form rational
expectations about the patient census consistent with
empirically observed patient census data. In addition
to the models based on (2), we have also estimated
several alternative variants, which we discuss in 2.2.

In addition to the anticipated nurse-to-patient ratio
(ENPRi

t1 i = 112), the vector of covariates xt includes a
number of controls. In particular, we include a day-of-
the-week dummy variable to capture any systematic
variation in absenteeism across days, a day/night-
shift fixed effect to capture variations between day
and night shifts, and a weekly fixed effect to cap-
ture any systematic variations that remain constant
over one week and affect absenteeism, but are other-
wise unobservable. Also, we include a holiday fixed
effect that takes the value of 1 on national public hol-
idays and 0 on any other day. This last variable is
designed to deal with a potential endogeneity prob-
lem because nurses may be inherently reluctant to
work on some select days, such as public holidays.
These days are known to the management of the
clinical unit which tries to accommodate the nurses’
aversion by staffing fewer nurses on such days. Nev-
ertheless, the nurses that are scheduled to work on
these “undesirable” days are still more likely to be
absent, irrespective of the chosen staffing levels. By
including the holiday variable we are trying to explic-
itly account for this effect. There may exist other
correlated variables that we omit, but to the extent
that they do not vary drastically over a period of
one week, the weekly fixed effect should capture the

influence of those variables. Finally, to account for
the possibility that absenteeism might be a delayed
response to past workloads, we include the values of
14 lagged nurse-to-patient ratios NPRt−j , j = 11 0 0 0 114,
which correspond to one calendar week. Because the
number of past shifts we use is rather arbitrary, we
conducted our statistical analysis for several different
values to make sure the results are not sensitive to the
number we choose.

Specifically, the models we estimate are

logit4�t5 = �i
0 +�i

ENPR × ENPRi
t +

14
∑

j=1

�i
NPR1 j × NPRt−j

+

7
∑

d=2

�i
DAY1d × DAYd1 t +

44
∑

f=2

�i
W1f ×Wf 1 t

+�i
DAYSHIFT × DAYSHIFTt

+�i
HOLIDAY × HOLIDAYt1 (3)

where �t is the probability that a nurse is absent
in shift t; i = 112 refers to the definition of ENPRi

used, DAYd1 t and Wf 1 t are the day and week fixed
effects, and DAYSHIFTt and HOLIDAYt are the shift
and holiday fixed effects. The estimation results for
Equation (3) are presented in Table 2. Model I uses
the first definition of the anticipated nurse-to-patient
ratio (ENPR1

t ), whereas Model III uses the second def-
inition (ENPR2

t ). To test whether the observed effect
of anticipated nurse-to-patient ratio on absenteeism
is robust, we also estimated the restricted versions
of Models I and III (which we denote as Models II
and IV), where we omit the 14 lagged nurse-to-patient
ratio variables. If the lagged nurse-to-patient ratios
are not related to absenteeism (i.e., if �i

NPR1 j = 0 for all
j = 11 0 0 0 114), omitting these variables will not intro-
duce any bias even if the lagged nurse-to-patient vari-
ables are correlated with the variables included in
the model. Model II uses the first definition of the
anticipated nurse-to-patient ratio (ENPR1

t ), whereas
Model IV uses the second definition (ENPR2

t ).
As can be seen from Table 2, the anticipated nurse-

to-patient ratio has a significant effect (at the 5%
or 10% level) on absenteeism rates in Models I, III,
and IV. In Model II the p-value of the anticipated
nurse-to-patient ratio is 1007%. The more nurses
scheduled for a particular shift, the less likely each
nurse is to be absent. In particular, according to the
first model, we estimate that the marginal effect of
staffing an extra nurse (calculated at the mean val-
ues of all remaining independent variables and using
the expected patient census value of 109) on the indi-
vidual absenteeism rate is around 0.572% = 00623/109.
In other words, the absenteeism rate would decrease
from its average value of 7034% to about 6078% when
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Table 2 Estimation Results for Logit Models

Model I Model II Model III Model IV

Coefficient Marginal effect Coefficient Marginal effect Coefficient Marginal effect Coefficient Marginal effect
Variable (robust error) (robust error) (robust error) (robust error) (robust error) (robust error) (robust error) (robust error)

ENPR1 −10001∗ −00623∗ −80534 −00533
4506695 4003525 4502915 4003305

ENPR2 −15024∗∗ −00946∗∗ −13025∗∗ −00827∗∗

4603555 4003935 4508925 4003675
NPR1 −00248 −000154 −00474 −000294

4300615 4001905 4300715 4001915
NPR2 20463 00153 30024 00188

4304385 4002145 4304595 4002155
NPR3 −00492 −000306 −00712 −000442

4209895 4001865 4209825 4001855
NPR4 30314 00206 30673 00228

4302655 4002035 4302755 4002035
NPR5 −20620 −00163 −20917 −00181

4300205 4001885 4300235 4001885
NPR6 50912∗ 00368∗ 50837∗ 00362∗

4302495 4002015 4302515 4002015
NPR7 00518 000322 00615 000382

4301555 4001965 4301575 4001965
NPR8 10556 000968 10570 000974

4302455 4002025 4302545 4002025
NPR9 −40112 −00256 −40252 −00264

4209985 4001865 4300025 4001865
NPR10 50656∗ 00352∗ 50746∗ 00357∗

4302055 4001995 4302075 4001985
NPR11 −30320 −00207 −30263 −00203

4209805 4001865 4209915 4001865
NPR12 20462 00153 20707 00168

4302715 4002045 4302765 4002035
NPR13 −20934 −00183 −20724 −00169

4300165 4001885 4300185 4001875
NPR14 40934∗ 00307∗ 40823 00299

4209875 4001855 4209785 4001845
DAYSHIFT 00112 0000694 00233 000145 00211 000130 00327∗∗ 000203∗∗

4001515 400009375 4001435 400008935 4001635 40001015 4001555 400009595
HOLIDAY −00853∗ −000382∗∗∗ −00787∗∗ −000364∗∗∗ −00848∗ −000380∗∗∗ −00783∗ −000362∗∗∗

4004405 40001345 4004015 40001315 4004405 40001355 4004015 40001315
Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Constant −20381∗ −20171∗∗∗ −10834 −10726∗∗

4104265 4007215 4104495 4007525
Observations 6,481 6,631 6,481 6,631
Log-likelihood −1,654 −1,690 −1,653 −1,688
LR-test 102.7 92.35 105.3 95.13

Notes. Standard errors are shown in parentheses. Marginal effects are calculated at the mean values of the independent variables. For the dummy variables,
the marginal effect shows the difference caused by changing the variable from 0 to 1.

∗, ∗∗, and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% confidence levels, respectively.

an extra nurse is added to the schedule. The log-
likelihood is (marginally) higher and the coefficient
of the anticipated nurse-to-patient ratio is larger in
Models III and IV, where the variation in the number
of scheduled evening nurses is ignored. This might
suggest that when nurses decide whether to show up
for work, they place greater emphasis on the number
of nurses working in their shift (i.e., ENPR2

t ) rather
than both the number of nurses working in their shift

and the evening shift that overlaps with their own
(i.e., ENPR1

t ).
As with any empirical finding, one might argue that

the relationship we find between absenteeism and
anticipated workload is a result of reverse causality
(i.e., it is not absenteeism that reacts to anticipated
workload but instead staffing, and thus workload,
that reacts to absenteeism). However, in the ED study
site, we know that absenteeism was not considered
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by the nurse manager making staffing decisions.
More generally, in discussions with managers respon-
sible for nurse staffing in other hospitals, absen-
teeism patterns were not tracked or used in staffing
decisions.

Note that the lag 6, lag 10, and lag 14 (lag 6 and
lag 10) of the nurse-to-patient ratio variables have
positive coefficients in Model I (Model III) which are
individually significant at the 10% level. This seems to
imply that the probability of a nurse being absent on
any shift would increase if the shift occurring three,
five, or seven days ago had a higher nurse-to-patient
ratio. Although these lags are individually significant,
the Wald test statistic and the likelihood ratio test
statistic for joint significance of all 14 lagged workload
variables in Model I as well as Model III reject the
hypothesis (even at the 10% level) that lagged nurse-
to-patient ratios have any joint explanatory power.
In the absence of any plausible explanation as to why
a lighter workload on a similar shift occuring three,
five, or seven days ago might increase absenteeism,
and in light of the weakness of this statistical relation-
ship, we are inclined to treat this result as spurious.

Interestingly, the holiday variable’s effect is signif-
icant (at 10% confidence level) and negative, thus
suggesting that nurses are about 308% less likely to
be absent on public holidays. Week fixed effects are
jointly significant (at the 1% level) in all four mod-
els. One of the effects that week dummies seem to
detect reasonably well is the impact of weather (in
particular, heavy snow conditions) on absenteeism.
For example, week 35 of our data set includes March
2–4, 2009. During six day and night shifts correspond-
ing to these dates, snow on the ground in New York
City was recorded to be more than five inches,2 the
level identified by the New York Metropolitan Trans-
portation Authority as the one at which the public
transportation disruptions are likely to set in.3 The
week-35 fixed effect is positive and significant (at the
5% level) in Models II and IV with a marginal effect
equal to 8075% in Model I and 9080% in Model IV.
Only three other days in our data set had as much
snow on the ground (December 3, December 21, and
January 20). Turning to the impact of day-of-week
fixed effect, there is some (weak) evidence that nurses
are more likely to be absent on weekends. They are
also more likely to be absent during a day shift,
when conflicting family obligations is often cited as
an important reason behind nurse absenteeism (Erick-
son et al. 2000, Nevidjon and Erickson 2001) are likely
to be more prevalent.

2 http://www.accuweather.com/.
3 http://www.mta.info/news/stories/?story=173 (last accessed Jan-
uary 23, 2011).

2.2. Verification Tests
To check the validity of our model estimation pro-
cedure, we have also conducted several verification
tests as described below. (Estimation details are avail-
able from the authors.)

2.2.1. Alternative Specifications. To ensure the ro-
bustness of our results, we estimated a number of
alternative modeling specifications. Namely, we esti-
mated the models of Equation (3) under the probit
specification. We also estimated variants of our mod-
els that use month fixed effect variables instead of
week fixed effect variables. The results were almost
identical in terms of variable significance, model sig-
nificance, and magnitude of marginal effects. The
model of Equation (3) assumes that any difference
between the night shift and the day shift is com-
pletely captured by the dummy variable DAYSHIFT.
However, it is possible that the two shifts are inher-
ently different, and so are their best-fit coefficients.
To test the hypothesis that the coefficients for two
shifts differ, we fitted an unrestricted binary choice
model to the data for each of the two shifts sepa-
rately and compared the fit with the restricted model
by constructing a likelihood ratio test. The test does
not reject the hypothesis that the coefficients are the
same at the 5% confidence level in all models. Finally,
we estimated models with alternative definitions of
the expected nurse-to-patient ratio. More specifically,
when estimating the expected patient census during
the upcoming shift in Equation (2), nurses (a) distin-
guish between day and night shifts, but not between
days of the week; (b) distinguish between days of the
week, but not between day shifts or night shifts; and
(c) distinguish between both the shift type and the
day of the week. Our main finding that higher (lower)
anticipated nurse-to-patient ratios decrease (increase)
nurse absenteeism is robust to these alternative mod-
eling specifications.

2.2.2. Nurse Heterogeneity and Aggregation Bias.
The aggregate nature of our data does not permit
an exact characterization of how workload impacts
the absenteeism behavior of each individual nurse.
Indeed, it would be interesting to measure whether
aversion to anticipated increased workloads is a com-
monly occurring nurse characteristic or limited to a
relatively small subset of nurses. However, our aggre-
gate results are not invalidated by the lack of such
a characterization. Through a simulation study, we
find that estimating a homogeneous logit model when
nurses are in fact heterogeneous does produce biased
estimation coefficients. However, we find that the
bias on the ENPR coefficient is positive, that is, it
would bias our (negative) coefficient toward zero and
not away from it. Therefore, our estimate should be
treated as a lower bound on how workload affects
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nurse absenteeism. Furthermore, we find that for
most reasonable assumptions about nurse heterogene-
ity, the magnitude of the bias is small compared to the
estimated value of the coefficient. This result is simi-
lar to that of Allenby and Rossi (1991), whose analysis
of marketing data lead the authors to conclude that in
most realistic settings there exists no significant aggre-
gation bias in logit models.

2.2.3. Within-Shift Correlation. One of the as-
sumptions we have made when estimating our mod-
els is that, conditional on the vector of covariates xt ,
the nurses are independent decision makers. In this
section, we relax this assumption and assume that
nurses can exhibit within-shift correlation. We esti-
mate a model within the generalized estimating equa-
tions framework, which allows the individual nurse
decisions Yn1 t to exhibit within shift correlation. The
correlation structure estimated is of the “exchange-
able form,” that is, Corr4Yn1 t1Ym1 l5 = � for t = l, and
is 0 otherwise. The least-square estimation of these
models yields very similar results to those presented
in Table 2, and the estimated correlation � is around
negative 1%.

2.3. Discussion and Implications
of the Empirical Study

Our empirical investigation has uncovered a link
between absenteeism and workload at the shift level.
We find that nurses are rational and forward looking
in their decision whether to attend or to be absent
from work. When an extra nurse is added to the
schedule, the absenteeism rate decreases on average
from 7.34% to 6.78%, a relative decrease of 7.8%. This
particular behavior, where nurses are more likely not
to show up when the workload per nurse is already
high, if not appropriately countered, will exacerbate
an already difficult situation for the hospital by cre-
ating more workload for the nurses that do show up.
Such a positive feedback in workload (i.e., high work-
load generates even higher workload) can have dire
consequences for patient safety (see Needleman et al.
2002) unless mitigating actions take place. However,
there is a silver lining to our finding in the sense that
the endogeneity of absenteeism might represent an
opportunity for hospitals. In the presence of endoge-
nous absenteeism, scheduling an extra nurse might be
more beneficial and even more cost effective than hos-
pital managers might realize because this extra nurse
increases the probability that all of her colleagues will
show up for work, therefore reducing the costs associ-
ated with absenteeism. Failing to account for this fun-
damental additional marginal benefit, which is purely
due to the endogeneity of absenteeism, might lead to
chronic understaffing.

To further investigate the implications of absen-
teeism and, in particular, its endogenous nature with

regard to staffing level decisions, we construct a styl-
ized model of nurse staffing. The aim of our model
is to generate managerial insights on the impact of
nurse absenteeism, in general, and the endogenous
nature of absenteeism, in particular, as it affects the
decision of how many nurses to staff. Although our
model is parsimonious, we believe that an appropri-
ately calibrated version of it can be used by nurs-
ing management in making tactical staffing decisions.
In particular, by periodically running the model for
all types of shifts (which differ in the distribution of
patient census and in nurse absenteeism propensity),
the nurse manager can decide how many nurses the
unit will need for each shift. Thus, coupled with ros-
tering considerations, the model can help the manager
decide the appropriate aggregate staffing level for the
unit. In addition to providing insight on the aggre-
gate level of permanent nurses needed by observing
how many agency or overtime nurses are required on
average to cover for last minute mismatches between
demand and supply, our model can help to deter-
mine how many such “flexible” nurses the hospital
will need to maintain adequate nurse staffing levels.

3. Endogenous Nurse Absenteeism:
Implications for Nurse Staffing

We begin our nurse staffing model by outlining the
key assumptions. We assume that a clinical unit uses
the primary nursing care (PNC) mode of nursing
care delivery (Seago 2001), which was used in the
ED we studied. Under the PNC mode, the nursing
staff includes only registered nurses (as opposed to
licensed practical nurses or unlicensed nursing per-
sonnel) who provide all direct patient care through-
out the patients’ stay in the clinical unit. The nurse
staffing process starts several weeks in advance of the
actual shift for which planning is performed. It is then
that a hospital staff planner needs to decide how many
nurses (y) to schedule for that particular shift. Because
of the phenomenon of absenteeism, the actual number
of nurses who show up for work on that shift, N , is
uncertain. We model N as a binomial random variable
B4y11 − �4y55, where �4y5 is the probability that any
scheduled nurse will be absent from work:

Prob4N =k �y1�4y55

=p4k3y1�4y55=























y!

k!4y−k5!
4�4y55y−k41−�4y55k

for 0≤k≤y,

0 otherwise.

(4)

We assume that the clinical unit follows a policy of
specifying, for each value of the average patient cen-
sus during a shift, C, a target integer number of
nurses T =R4C5 required to provide adequate patient
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care during a particular shift. We assume that C
takes on discrete values and that R4C5 is a monotone
increasing function with R405 = 0. A simple exam-
ple of R4C5 is provided by a “ratio” approach under
which R4C5 = ��C�, with � ∈ 60117 representing a
mandated nurse-to-patient ratio. Alternately, if a clin-
ical unit is modeled as a queueing system in which
patients generate service requests and nurses play
the role of servers, as was done in Yankovic and
Green (2011), R4C5 can take a more complex form to
ensure that certain patient service performance mea-
sures, such as the expected time patients wait to be
served, conform to prespecified constraints.

At the time of the nurse staffing decision, we assume
that the decision maker uses a known probability den-
sity function of the average patient census C during
the shift for which personnel planning is conducted,
Prob4C = n5 = pC4n5, n ∈ N+,

∑�

n=0 pC4n5= 1. We treat
the demand uncertainty expressed by the patient cen-
sus C and the supply uncertainty expressed by N as
being independent and assume that the realized val-
ues of C and N become known shortly before the
beginning of the shift. Any nursing shortage 4R4C5−

N5+ is covered by either hiring agency nurses or ask-
ing nurses who have just completed their shift to stay
overtime. We further assume that nurses that do show
up are paid $wr per shift, whereas nurses that do not
show up are paid $wn, where wr ≥wn. Setting wr =wn

represents a clinical unit where nurses are paid the full
wage whether or not they actually show up for work.
This setting is consistent with the PNC mode of nurs-
ing care delivery where nurses are salaried employees
who can only be scheduled to work on a fixed number
of shifts per week. When a scheduled nurse does not
show up for work, she cannot be rescheduled in lieu
of the shift she missed. Thus, in effect, nurses are paid
for each shift for which they are scheduled and are
not penalized for being absent, as long as their absen-
teeism does not exceed the annual limit of 10 personal
days. In contrast, setting wn = 0 represents a setting
where nurses receive no pay when absent. In addi-
tion, we assume that if more nurses show up for work
than required given the number of patients present
(N >R4C5) they all have to be paid and cannot be sent
home. The per-shift cost of extra/overtime nurses is
$we, where we ≥wr .

The goal of the decision maker is to choose a nurse
staffing level y that minimizes the expected cost W4y5
of meeting the target R4C5:

W4y5 = wny+ 4wr −wn5EN 6N � y7

+weEC1N 64R4C5−N5+ � y71 (5)

where EN denotes expectation taken with respect to
the number of nurses who show up for work and
EC1N denotes expectation taken with respect to both

the number of patients and the number of nurses who
show up for work. Note that because there is a one-to-
one correspondence in our model between the patient
demand C and the number of required nurses T ,
we can recast the calculation of the expectation with
respect to the demand value in terms of an equivalent
calculation over the distribution of T using the corre-
sponding probability distribution function. In partic-
ular, let Sn be the set of average patient census values
all corresponding to the same number of required
nurses n: Sn = 4C ∈N+ �R4C5= n5. Then the probabil-
ity distribution for T is given by Prob4T = n5= pT 4n5,
n ∈ N+, pT 4n5 =

∑

l∈Sn
pC4l5,

∑�

n=0 pT 4n5 = 1. In turn,
the cost minimization based on (5) becomes

min
y∈N+

(

wny+ 4wr −wn541 −�4y55y

+weET 1N 64T −N5+ � y7
)

0 (6)

Note that with no absenteeism (�4y5 = 0), the num-
ber of nurses showing up for work N is equal to the
number of scheduled nurses y, and the nurse staffing
problem reduces to a standard newsvendor model
with the optimal staffing level given by

y∗

0 = min
(

y ∈N+

∣

∣

∣

∣

FT 4y5≥ 1 −
wr

we

)

1 (7)

with FT 4y5 =
∑y

n=0 pT 4n5 being the cumulative den-
sity function of the demand function evaluated at y,
and the value 1 − wr/we playing the role of the crit-
ical newsvendor fractile. Below we present an anal-
ysis of the staffing decision (6) starting with the
case of exogenous absenteeism, which we use as a
benchmark.

3.1. Optimal Nurse Staffing Under
Exogenous Absenteeism Rate

Consider a clinical unit that experiences an endoge-
nous nurses’ absenteeism rate �4y5, but treats it as
exogenous. For example, the schedule planner uses
the average value of all previously observed daily
absenteeism rates, �ave. The cost function to be mini-
mized under this approach is given by

Wave4y5 = y4wr 41 −�ave5+wn�ave5

+we

y
∑

k=0

�
∑

n=0

4n− k5+pT 4n5p4k3y1�ave5

= wy+we

y
∑

k=0

q4k5p4k3y1�ave51 (8)

where w = wr 41 − �ave5 + wn�ave is the effective cost
per scheduled nurse, and

q4k5=

�
∑

n=0

4n− k5+pT 4n5 (9)

represents an expected nursing shortage given that k
regular nurses show up for work. The optimal staffing
level in this case is expressed by the following result.
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Proposition 1. (a) The minimizer of (8) is given by

y∗

ave = min
(

y ∈N+

∣

∣

∣

∣

y
∑

k=0

FT 4k5p4k3y1�ave5

≥ 1 −
wr 41 −�ave5+wn�ave

we41 −�ave5

)

1 (10)

and is a nonincreasing function of wr/we and wn/we.
(b) Consider two cumulative distribution functions for

the required number of nurses T , F 1
T 4k5 and F 2

T 4k5 such
that F 1

T 4k5≥ F 2
T 4k5 for all k ∈N+, and let y∗1 i

ave be the opti-
mal staffing levels corresponding to F i

T 4k5, i = 112. Then,
y∗11

ave ≤ y∗12
ave .

We relegate all proofs to the appendix. Note
that (10) represents a generalization of the expression
for the optimal staffing levels without absenteeism (7).
As in the no-absenteeism setting, it is never optimal to
decrease staffing levels when the target nursing level
increases or when the cost advantage associated with
earlier staffing becomes more pronounced. While this
behavior of the optimal policy is intuitive, the depen-
dence of the optimal staffing levels on the value of
the absenteeism rate is not as straightforward. In par-
ticular, depending on the interplay between the ratios
of the cost parameters wr/we and wn/we, the charac-
teristics of the target nursing level distribution, and
the absenteeism rate, the increase in the absenteeism
rate can increase or decrease the optimal staffing level.
The following result describes the properties of the
optimal staffing levels in general settings.

Proposition 2. (a) There exists �u
ave such that the opti-

mal staffing level y∗
ave is a nonincreasing function of the

absenteeism rate �ave for all �ave ∈ 6�u
ave1 17.

(b) For

wn≤we

(⌈

F −1
T

(

1−
wr

we

)⌉)

pT

(⌈

F −1
T

(

1−
wr

we

)⌉)

1 (11)

there exists � l
ave such that the optimal staffing level y∗

ave is
a nondecreasing function of the absenteeism rate �ave for
all �ave ∈ 601� l

ave7.

Figure 1 Optimal Staffing Level as a Function of the Absenteeism Rate for Different Values of the Cost Ratio w/we for w = wr = wn and the
Empirical Targeted Nursing Level Distribution
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A more detailed characterization of the optimal
staffing levels can be obtained for some target nursing
level distributions, for example, for a discrete uniform
distribution.

Corollary 1. Let

FT 4k5=











k+ 1
Tmax + 1

for 0 ≤ k ≤ Tmax1

1 k ≥ Tmax0

(12)

Then, for w/we ≥ 1
4 , the optimal nurse staffing level is

given by

y∗

ave =

⌈(

Tmax

1 −�ave
−

Tmax + 1
41 −�ave5

2

w

we

)⌉

1 (13)

and is a nondecreasing (nonincreasing) function of �ave for
�ave ≤ �u

ave (�ave >�u
ave), where

�u
ave

=max
(

011−max
(

01
24Tmax +15wr

Tmaxwe−4Tmax +154wr −wn5

))

0

(14)

To illustrate the monotonicity properties of the opti-
mal staffing levels formalized in Proposition 2, we
use the distribution for the number of required nurses
obtained from our empirical data for the average
patient census using 1-to-10 nurse-to-patient ratio. For
this distribution, Figure 1 shows the dependence of
the optimal staffing level on the absenteeism rate for
w =wr =wn. For a given value of the cost ratio w/we,
there exists a critical value of the absenteeism rate
�u

ave for which the optimal response to an increase
in absenteeism switches from staffing more nurses to
staffing fewer. Note that irrespective of the distribu-
tion for targeted nursing level, for high values of the
absenteeism rate or high values of the cost ratio w/we

(to be precise, for �ave ≥ 1 − w/we), it is more cost-
effective not to staff any nurses in advance and to
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rely exclusively on the extra/overtime mechanisms
of supplying the nursing capacity. For low values of
the absenteeism rate and low values of the cost ratio
w/we, higher absenteeism can induce an increase in
staffing levels, as it is cheaper to counter the increased
absenteeism by staffing more nurses. However, as the
cost ratio w/we increases, it becomes more cost effec-
tive to staff fewer nurses, relying increasingly on the
extra/overtime supply mechanism.

3.2. Endogenous Absenteeism: Optimal Staffing
In the endogenous absenteeism setting, the expected
staffing cost (6) becomes

W4y5= ywr − 4wr −wn5a4y5+weL4y1�4y551 (15)

where
a4y5= y�4y5 (16)

is the expected number of absent nurses, and

L4y1�4y55=

y
∑

k=0

q4k5p4k3y1�4y551 (17)

where q4k5 is defined by (9), p4k3y1�4y55 is the prob-
ability mass function of the binomial distribution,
where k nurses show up for work when y are sched-
uled and �4y5 is the (endogenous) probability of a
nurse being absent. Note that for general absenteeism
rate function �4y5, the increasing marginal property of
the “exogenous” staffing cost function (8) with respect
to the number of scheduled nurses may not hold.
Below we formulate a sufficient condition for this
property to be preserved under endogenous absen-
teeism. First, for a given distribution of the targeted
nursing level pT 4k51 k ≥ 0, we introduce the following
quantity:

�T 4y5 = 1 − min
(

11
(

∑�

k=y−2 pT 4k5

ypT 4y− 15+ pT 4y− 25

)1/4y−15)

1

y ∈N+1 y ≥ 20 (18)

As shown below, (18) represents one of the bounds on
the absenteeism rate function that ensures the opti-
mality of the greedy-search approach to finding the
optimal nurse staffing level.

Proposition 3. Let �4x5 ∈ C2401�5, 0 ≤ �4x5 ≤ 1 be
a nonincreasing, convex function defined on x ≥ 0. Con-
sider an endogenous absenteeism setting characterized by
the absenteeism rate �4y5 for y ∈ N+ scheduled nurses.
Then, the optimal staffing level is given by

y∗
= min

(

y ∈N+

∣

∣

∣

∣

L4y+ 11�4y+ 155−L4y1�4y55

≥ −
wr

we

41 −�4y55−
wn

we

�4y5

+
wr −wn

we

y4�4y+ 15−�4y55

)

(19)

and is a nonincreasing function of wr/we, provided that

�4y5≤ min
(

2
y
1�T 4y5

)

(20)

and
d2a4y5

dy2
≤ 0 (21)

for any y ≥ y∗. In addition, consider two cumulative dis-
tribution functions for the required number of nurses T ,
F 1
T 4k5 and F 2

T 4k5 such that F 1
T 4k5 ≥ F 2

T 4k5 for all k ∈ N+,
and let y∗1 i be the optimal staffing levels corresponding to
F i
T 4k5, i = 112. Then, y∗11 ≤ y∗12, provided that (20) holds

for any y ≥ y∗12.

Proposition 3 essentially describes a greedy-search
algorithm for finding the optimal number of nurses to
schedule. Starting from a chosen number of nurses y,
the nursing manager can start adding (or subtracting)
nurses as long as the total costs continue decreasing.
At y∗, where the costs stop decreasing, the nursing
manager can stop the search. While this is a one-
dimensional optimization problem, we would argue
that the greedy-search approach is useful because the
sums over the probability mass of the patient census
(see (9)) and nurses present (see (17)) required to cal-
culate the costs of this problem can be time consum-
ing to estimate.

The fact that such a greedy-search approach is opti-
mal requires the sufficient condition (20) that states,
intuitively, that the increasing marginal shape of the
staffing cost function with respect to the number
of scheduled nurses is preserved under endogenous
absenteeism if the absenteeism rate is not too high.
Thus, (15) is not too different from the cost func-
tion in (6). More specifically, this sufficient condition
requires that the absenteeism rate function is lim-
ited from above by two separate bounds. The first
bound implies that the expected number of absent
nurses does not exceed two irrespective of the number
of nurses actually scheduled for work. The sufficient
condition (21) requires that the expected number of
absent nurses exhibits nonincreasing returns to scale.

To study the endogenous absenteeism case further,
we use a parametric specification consistent with our
empirical findings, in particular with the logit model
specification. We specify that

�4y5=
1

1 + e�+�y
1 (22)

where both � and � are positive constants. The
assumption about positive values for these absen-
teeism rate parameters is plausible in a wide range
of settings; � > 0 implies that the absenteeism
rate declines with the number of scheduled nurses,
whereas � > 0 ensures that the absenteeism rate is
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not too high even when the number of scheduled
nurses is low and the anticipated workload is high.
In particular, evaluating the best-fit logit model in (3),
using the estimates reported in Table 2, we obtain �=

−�1
ENPR/E6Ct7 = 00092, with �1

ENPR = −10001, E6Ct7 =

10900. For the average absenteeism rate to match our
sample average of 7034%, we set �= 10533. Note that
the endogenous absenteeism rate �4y5 characterized
by the logistic function given by (22) with � ≥ 0 and
�≥ 0 is a monotone decreasing convex function. Thus,
the result of Proposition 3 is ensured by the following
restrictions on the values of � and �:

Lemma 1. For �4y5 = 1/41 + e�+�y5, with �, � ≥ 0,
�e1+�+2� ≥

1
2 implies (20), and �≤ 2 implies (21).

In the ED we studied, the estimated values of � =

10533 and �= 00092 satisfy Lemma 1. In particular, the
maximum value of the product of number of sched-
uled nurses y and the estimated absenteeism rate
calculated using these values is equal to 00804, well
below 2. The second bound on the right-hand side
of (20) takes the form of an effective absenteeism rate
function that depends exclusively on the distribution
of the targeted nursing level. Note that �T 4y5 ≥ 0 if
and only if

pT 4y− 15
∑�

k=y−1 pT 4k5
≥

1
y
0 (23)

The expression on the left-hand side of (23) is the
hazard rate function for the distribution of the tar-
geted nursing level. Thus, (23) stipulates that the
bound described by (20) is meaningful only in set-
tings where such a hazard rate evaluated at y exceeds
1/4y+ 15. For the absenteeism rate function given
by (22), the constraint �4y5 ≤ �T 4y5 implies, in the
same spirit as Lemma 1, the lower-bound restriction
on the values of � and �: �4y5 ≤ �T 4y5 ⇔ � + �y ≥

log441 −�T 4y55/�T 4y55. Figure 2 compares the absen-
teeism rate (22) computed for �= 10533 and �= 00092,
with the effective absenteeism rate �T 4y5 from (18)

Figure 2 Absenteeism Rate �4y 5 Computed for �= 10533 and
�= 00092 and the Effective Absenteeism Rate �T 4y 5

Computed Using the Empirical Targeted Nursing
Level Distribution
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computed using the empirical targeted nursing level
distribution. Note that the sufficient condition of
Proposition 3 (�4y5 ≤ �T 4y5) is satisfied for virtually
any staffing level above 10 nurses, which is approx-
imately equal to the expected number of required
nurses in our setting.

3.3. Endogenous Absenteeism: Implications of
Model Misspecification on Staffing Decisions

In this section, we compare the optimal nurse staffing
levels with those made by a clinical unit that incor-
rectly treats the absenteeism rate as exogenous and
uses a trial-and-error procedure under which the
assumed exogenous absenteeism rate is updated every
time a new staffing decision in made. In this latter
case, which we label “misspecified-with-learning,” the
clinical unit selects staffing level yML such that

yML
= min

(

y ∈N+

∣

∣

∣

∣

y
∑

k=0

FT 4k5p4k3y1�4y
ML55

≥ 1 −
wr 41 −�4yML55+wn�4y

ML5

we41 −�4yML55

)

1 (24)

with �4y5 denoting the endogenous absenteeism rate.
Note that (24) reflects a self-consistent way of select-
ing the staffing level; yML is the best staffing decision
in the setting where the absenteeism rate is exogenous
and determined by �4yML5. In other words, a clinical
unit assuming that the absenteeism rate is given by
constant value �4yML5 will respond by scheduling yML

nurses and, as a result, will observe exactly the same
value of the absenteeism rate, even if the true absen-
teeism process is endogenous and described by �4y5.
An intuitive way of rationalizing the choice of yML is
to consider a sequence of exogenous staffing levels yn,
n ∈N+, such that

yn+1 =min
(

y∈N+

∣

∣

∣

∣

y
∑

k=0

FT 4k5p4k3y1�4yn55

≥1−
wr 41−�4yn55+wn�4yn5

we41−�4yn55

)

1 n∈N+0 (25)

Equation (25) reflects a sequence of repeated adjust-
ments of staffing levels, starting with some y0, each
based on the value of the absenteeism rate observed
after the previously chosen staffing level is imple-
mented. In this updating scheme, yML can be thought
of as the limit, limn→� yn, if such a limit exists. Note
that for a general demand distribution FT 4k5 and a
general absenteeism rate function �4y5, the set of
staffing levels E satisfying (24) may be empty or may
contain multiple elements. The analysis of existence
and uniqueness of yML is further complicated by the
discrete nature of staffing levels. In the following dis-
cussion, we bypass this analysis and assume that
there exists at least one staffing level satisfying (24).
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Figure 3 Worst-Case Performance Gaps Between the Optimal Staffing Policy and the Misspecified-with-Learning (ML) and Exogenous Policies as
Functions of the Average Absenteeism Rate �ave Under the Empirical Targeted Nursing Level Distribution for wn/wr = 1100510
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As the following result shows, even if E contains mul-
tiple elements, each of them is bounded from above
by the optimal endogenous staffing level in settings
where the expected number of absentees decreases
with the number of scheduled nurses.

Proposition 4. Suppose that the conditions of Proposi-
tion 3 hold and that the set of staffing levels satisfying (24),
E, is nonempty. Then, yML ≤ y∗, for any yML ∈ E, provided
that, at the optimal staffing level y∗, the expected num-
ber of absent nurses decreases with the number of nurses
scheduled, a4y∗ + 15 < a4y∗5.

Proposition 4 implies that ignoring the endogenous
nature of absenteeism can lead to understaffing in set-
tings where both the endogenous absenteeism rate and
the expected number of absent nurses decline with the
number of scheduled nurses. Figure 3 illustrates the
results of the numerical experiment designed to quan-
tify a potential cost impact of using heuristic staffing
policies for realistic values of problem parameters. In
our study, we have varied the cost ratio wr/we from
wr/we = 005 to wr/we = 009. The lower limit of this
interval, wr/we = 005, corresponds to the setting in
which use of agency nurses carries a 100% cost pre-
mium, a realistic upper bound on the values encoun-
tered in practice. The upper limit, wr/we = 009, reflects
the use of overtime to compensate for absenteeism,
with we at about 10% premium with respect to wr .
In the ED we studied, absent nurses were paid at the
same rate as the nurses who showed up for work (so
that wn = wr ). To investigate the effect of lower com-
pensation levels for absent nurses, we have included
the cost ratios wn = 005wr and wn = 0. As the absen-
teeism rate function, we have used �4y5 = 1/41 + e�y5
with the value of � varied to explore different average
absenteeism rates calculated as

�ave =

ymax
∑

y=ymin

pT 4y5

1 + e�y
1 (26)

where ymin = 6 and ymax = 16 reflect the smallest and
largest possible targeted nursing level realizations,
and pT 4y5 reflects the empirical distribution for the

required number of nurses. In our study, we have
compared the performance of three staffing policies:
the optimal policy described in Proposition 3, the
ML policy described by (24), and the exogenous pol-
icy that assumes that the absenteeism rate does not
depend on the staffing level and is given by (26). Fig-
ure 3 shows the worst-case performance gaps (calcu-
lated over the range of cost ratios wr/we ∈ 600510097)
of the ML and the exogenous policies as functions of
�ave for three ratio levels wn/wr = 11005, and 0. Our
numerical results indicate that in the settings where
the average absenteeism rate �ave is small, ML and
exogenous policies represent good approximations for
the optimal staffing policies. For example, in the ED
we studied, the average absenteeism rate was 7034%,
and the corresponding worst-case performances for
these two policies were between 2% and 3% for
wn =wr . However, as �ave increases, so does the
worst-case performance gap for both policies: In par-
ticular, in the same setting, the worst-case perfor-
mance gaps approximately double to 4% (6%) for the
exogenous (ML) policy when the average absenteeism
rate reaches 15%. As it turns out, a reduction in the
amount of hourly compensation paid to absent nurses
significantly closes these performance gaps for both
policies: For wn = 0, the maximum performance gaps
drop below 1%. Figure 4 displays similarly defined
performance gaps obtained by focusing on the aver-
age absenteeism rate of 7.34% we have observed, and
by varying the value of � within the 95% confidence
interval around the estimate �̂= 001398 obtained in
Model III, namely, � ∈ 6001398 − 1096 × 005831001398 +

1096 × 005837= 600025510025417. The values of the per-
formance gaps in Figure 4 are similar to those in
Figure 3, displaying, as expected, a substantial drop
as the value of � shifts toward the lower limit of the
confidence interval.

4. Discussion
Nurses constitute one of the most important resources
in hospitals, both in terms of cost and clinical out-
comes. Therefore, any insights into how to deploy
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Figure 4 Worst-Case Performance Gaps Between the Optimal Staffing Policy and the Misspecified-with-Learning (ML) and Exogenous Policies as
Functions of � for �ave = 7034% Under the Empirical Targeted Nursing Level Distribution for wn/wr = 1100510
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nurses more effectively are of great interest to hospi-
tal managers. This paper focuses on the issue of nurse
absenteeism, a problem that has vexed hospital man-
agers for a long time. Using data from a large urban
hospital ED, we find that nurse absenteeism is exac-
erbated when fewer nurses are scheduled for a partic-
ular shift. This finding highlights the need for hospi-
tal managers to use better methods to identify nurse
staffing levels that are adequate to handle the antic-
ipated workload. Our study relies on aggregate data
from a single department and thus does not permit
a detailed investigation of the impact of workload at
the individual nurse level. We leave such an extension
to future research. It is, nevertheless, the first study to
demonstrate that staffing decisions have an impact on
shift-level worker absenteeism—a fact that seems not
to have been examined in prior staffing literature.

We analytically examine the implications of absen-
teeism, both exogenous and endogenous, on opti-
mal staffing policies. To do this, we develop an
extension to the single-period newsvendor model,
which explicitly accounts for uncertainty in patient
census and in the number of nurses that show
up for work. Our work suggests that the presence
of endogenous absenteeism gives rise to systematic
understaffing, which, in turn, has important practi-
cal consequences for hospitals. First, as our model
demonstrates, endogenous absenteeism gives rise to
noticeable cost increases even in settings with low
absenteeism rates, as long as absenteeism exhibits a
substantial degree of endogeneity and as long as mon-
etary compensation for absent nurses is comparable
to that of nurses who show up for work. For model
parameters that represent the hospital we study, we
find that the cost of ignoring the endogenous nature
of absenteeism can be about 2% to 3%. Second, such
chronic understaffing harms patients, especially in the
life-and-death setting of an ED. Third, it is likely to be
a contributing factor to widely reported nurse job dis-
satisfaction (Aiken et al. 2002). Our research points to
an important opportunity for cash-constrained hospi-
tals to improve quality of patient care as well as nurse
working conditions, while reducing operating costs.

Turning to the specific context of our analysis, note
that our assumption about the unlimited availability
of extra/overtime nursing capacity may not be valid
in some clinical environments. In such environments
it may be impossible to replace absent nurses at a
reasonable cost or in reasonable time, and the endo-
geneity of absenteeism can lead to significant under-
staffing with the possibility of serious deterioration of
service quality and longer ED delays. In other clini-
cal units the use of agency nurses who may be less
familiar with the unit can lead to similar declines in
quality of patient care and an increase in the rate
of medical errors. Thus, an accurate understanding
of the nature of nurse absenteeism and the use of a
model that accurately incorporates this phenomenon
in determining appropriate staffing levels is impera-
tive to ensuring high-quality patient care.

Other than adjusting staffing levels, endogenous
absenteeism may be addressed with a number of com-
plementary initiatives. Of particular value is the use
of methodologies that lead to better matching of sup-
ply and demand through more effective allocation
of nurses across units/shifts (Wang and Gupta 2012)
and more accurate forecasting of patient census. Also
of value are interventions that target the organiza-
tional culture of burnout (Maslach et al. 2012). Future
research should investigate and compare the efficacy
and cost effectiveness of such interventions.
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Appendix
Below we present outlines of the proofs of the analytical
results.

Proof of Proposition 1. Note that

Wave4y+ 15−Wave4y5 = w+we

(

L4y+ 11�ave5−L4y1�ave5
)

= w+weãL4y1�ave50
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We establish the result of the proposition by showing
that ãL4y1�ave5 ≤ 0 and ã2L4y1�ave5 = L4y + 21�ave5 −

2L4y + 11�ave5 + L4y1�ave5 ≥ 0. First, note that q4k + 15 −

q4k5 = −
∑�

n=k+1 pT 4n5 ≤ 0 and q4k + 25 − 2q4k + 15 + q4k5 =

pT 4k+15≥ 0. Then, ãL4y1�ave5=
∑y+1

k=0 q4k54p4k3y+11�ave5−
p4k3y1�ave55, where we have used p4y + 13y1�ave55 ≡ 0.
Next, using

p4k3y+ 11�ave5 = 41 −�ave5p4k− 13y1�ave5

+�avep4k3y1�ave51 k = 01 0 0 0 1 y1 (27)

we get

y+1
∑

k=0

q4k5
(

p4k3y+11�ave5−p4k3y1�ave5
)

= 41−�ave5
y
∑

k=0

4q4k+15−q4k55p4k3y1�ave5≤01 (28)

where we have used
y+1
∑

k=0

q4k5p4k− 13y1�ave5=

y+1
∑

k=0

q4k+ 15p4k3y1�ave50

Note that p4k − 13y1�ave5 ≡ 00 From p4y + 23y1�ave5 ≡ 0
and (27), we get

ã2L4y1�ave5 = 41−�ave5
2
(y+2
∑

k=0

4q4k+15−q4k55

·
(

p4k−13y1�ave5−p4k3y1�ave5
)

)

0 (29)

Note that
y+2
∑

k=0

(

q4k+ 15− q4k5
)

p4k− 13y1�ave5

=

y+2
∑

k=0

4q4k+ 25− q4k+ 155p
(

k3y1�ave

)

1

where we have used p4−13y1�ave5 ≡ p4y + 13y1�ave5 ≡

p4y+ 23y1�ave5≡ 0. Thus, we obtain for

ã2L4y1�ave5= 41 −�ave5
2
( y
∑

k=0

(

q4k+ 25− 2q4k+ 15+ q4k5
)

· p4k3y1�ave5

)

≥ 00

Furthermore, note that ãL4y1�ave5≥ −w/we is equivalent to
y
∑

k=0

FT 4k5p4k3y1�ave5≥ 1 −w/4we41 −�ave550

Now, consider F 1
T 4k5 and F 2

T 4k5 such that F 1
T 4k5 ≥ F 2

T 4k5
for any k ∈ N+. Then, ãL14y1�ave5 ≥ ãL24y1�ave5 for any
y ∈N+ and, respectively, y∗11

ave = min4y ∈ N+ � ãL14y1�ave5 ≥

−w/we5≤ min4y ∈N+ �ãL24y1�ave5≥ −w/we5= y∗12
ave . �

Proof of Proposition 2. First, we introduce G4y1�5 =
∑y

k=041 − FT 4k55p4k3y1�5 and note that

G4y+ 11�5 = 41 −�5
y+1
∑

k=1

41 − FT 4k55p4k− 13y1�5

+�
y
∑

k=0

41 − FT 4k55p4k3y1�51 (30)

where we have used (27). Then,

G4y+11�5 ≤ 41−�5
y
∑

k=0

41−FT 4k55p4k3y1�5

+�
y
∑

k=0

41−FT 4k55p4k3y1�5=G4y1�50 (31)

Furthermore,

¡G

¡�
= y

(y−1
∑

k=0

41 − FT 4k55
4y− 15!

k!4y− 1 − k5!
4�y−1−k41 −�5k5

)

− y

( y−1
∑

k−1=0

41 − FT 4k55
y!

4k− 15!4y− 1 − 4k− 155!

· 4�y−1−4k−1541 −�5k−15

)

= y

(y−1
∑

k=0

4FT 4k+ 15− FT 4k55p4k3y− 11�5
)

≥ 00 (32)

The optimality condition (10) can be rewritten as

y∗

ave =min
(

y∈N+

∣

∣

∣

∣

G4y1�ave5≤
wr −wn

we

+
wn

we41−�ave5

)

0

Since y is a discrete variable and �ave is a continu-
ous parameter, there exist a set of values � i

ave ∈ 60117,
i = 11 0 0 0 1 Imax, with �1

ave = 0 and �
Imax
ave = 1, with the optimal

y∗
ave4�ave5 remaining constant in each interval 4�i

ave1�
i+1
ave 5,

i = 11 0 0 0 1 Imax − 1, and exhibiting finite jumps at � i
ave, i.e.,

y∗
ave4�

i
ave −05 6= y∗

ave4�
i
ave +05, i = 21 0 0 0 1 Imax −1. Note that the

sign of the difference y∗
ave4�

i
ave + 05 − y∗

ave4�
i
ave − 05 is com-

pletely determined by the sign of

H4� i
ave5 =

¡G4min4y∗
ave4�

i
ave − 051 y∗

ave4�
i
ave + 0551�i

ave5

¡�i
ave

−
wn

we41 −� i
ave5

2
0 (33)

Indeed, suppose that y∗
ave4�

i
ave + 05 > y∗

ave4�
i
ave − 05. Then,

we should have G4y∗
ave4�

i
ave − 051�i

ave − 05 ≤ 4wr −wn5/we +

wn/4we41 − 4�i
ave − 0555 and G4y∗

ave4�
i
ave − 051�i

ave + 05 >
4wr −wn5/we +wn/4we41 − 4�i

ave + 0555. Combining these two
expressions, we get

G4y∗

ave4�
i
ave − 051�i

ave + 05−G4y∗

ave4�
i
ave − 051�i

ave − 05

>
wn

we41 − 4�i
ave + 055

−
wn

we41 − 4� i
ave − 055

(34)

or

¡G4y∗
ave4�

i
ave − 051�i

ave − 05
¡�ave

>
wn

we41 − 4� i
ave − 0552

0

Similarly, y∗
ave4�

i
ave + 05 < y∗

ave4�
i
ave − 05 implies that

¡G4y∗
ave4�

i
ave + 051�i

ave − 05
¡�ave

<
wn

we41 − 4� i
ave − 0552

0

Note that according to (32),

¡G4y∗1�i
ave5

¡�i
ave

= y∗

(y∗−1
∑

k=0

pT 4k+ 15p4k3y∗
− 11�i

ave5

)

1
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so that (33) can be expressed as

H4�i
ave5= ŷ

(ŷ−1
∑

k=0

pT 4k+15p4k3ŷ−11�i
ave5

)

−
wn

we41−� i
ave5

2
1

where ŷ = min4y∗
ave4�

i
ave − 051 y∗

ave4�
i
ave + 055. Note that for

� i
ave → 0, y∗

ave4�
i
ave5 → y∗

0 , as expressed in (7), so that y∗
0 =

�F −1
T 41 −wr/we5�. Then,

H4�i
ave → 05=

(⌈

F −1
T

(

1 −
wr

we

)⌉)

pT

(⌈

F −1
T 41 −

wr

we

5

⌉)

−
wn

we

0

Thus,
(

�F −1
T 41 −

wr

we

5

⌉)

pT

(⌈

F −1
T 41 −

wr

we

5

⌉)

≥
wn

we

implies that there exist � l
ave such that y∗

ave is a nondecreas-
ing function of �ave for �ave ≤ � l

ave. On the other hand,
� i

ave ≥ 4we −wr 5/4wn +we −wr 5 implies that y∗
ave4�

i
ave5 = 0,

and for �i
ave → 4we −wr 5/4wn +we −wr 5, y∗

ave4�
i
ave5 → 0, and

H4� i
ave → 4we −wr 5/4wn +we −wr 55 = −4wn +we −wr 5

2/
4wewn5 < 0. Thus, there exist �u

ave such that y∗
ave is a nonin-

creasing function of �ave for �ave ≥ �u
ave. �

Proof of Corollary 1. Under the discrete uniform
demand distribution specified by (12), the sum in the
expression for the optimal staffing level (10) becomes

y
∑

k=0

FT 4k5p4k3y1�ave5

=











































y41−�ave5+1
Tmax +1

for y≤Tmax1

1
Tmax +1

Tmax
∑

k=0

4k+15p4k3y1�ave5

+

y
∑

k=Tmax+1

p4k3y1�ave5 for y≥Tmax +10

(35)

Note that for y = Tmax, (35) becomes

Tmax41 −�ave5+ 1
Tmax + 1

= 1 −
�aveTmax

Tmax + 1
≥ 1 −

w

we41 −�ave5
1

as long as w/we ≥ �ave41 − �ave5Tmax/4Tmax + 15. The supre-
mum of the right-hand side of this expression is 1

4 (for
�ave = 005 and Tmax → �), so that this expression is implied
by w/we ≥

1
4 . Thus, under this condition, the optimal

staffing level does not exceed Tmax and, consequently,

y∗

ave = min
(

y ∈N+

∣

∣

∣

∣

y41 −�ave5+ 1
Tmax + 1

≥ 1 −
w

we41 −�ave5

)

=

⌈(

Tmax

1 −�ave
−

Tmax + 1
41 −�ave5

2

w

we

)⌉

0

Furthermore, differentiating the expression under the “ceil-
ing” function on the right-hand side with respect to �ave,
we get

1
41 −�ave5

3

((

Tmax − 4Tmax + 15
wr −wn

we

)

41 −�ave5

−24Tmax + 15
wr

we

)

1

which is nonnegative (nonpositive) if and only if �ave ≤ �u
ave

(�ave ≥ �u
ave). �

Proof of Proposition 3. Using L4y1�4y55 =
∑y

k=0 q4k5 ·

p4k3y1�4y55, we have W4y + 15 − W4y5 = wr − 4wr − wn5 ·

ãa4y5 + weãL4y1�4y55, where ãL4y1�4y55 = L4y + 11
�4y + 155− L4y1�4y55, and ãa4y5 = a4y + 15− a4y5. We pro-
ceed by identifying sufficient conditions for ãL4y1�4y55≤0,
ã2L4y1�4y55 = ãL4y + 11�4y + 155 − ãL4y1�4y55 ≥ 0, and
4wr − wn5ã

2a4y5 = 4wr − wn54ãa4y + 15 − ãa4y55 ≤ 0. Since
�4y5 is continuous and twice differentiable, it follows imme-
diately that a4y5 is also continuous and twice differentiable,
and therefore a sufficient condition for 4wr −wn54ãa4y+15−
ãa4y55 ≤ 0 is given by 4wr − wn54d

2/dy25a4y5 ≤ 00 Now,
ãL4y1�4y55 can be written as

y+1
∑

k=0

q4k5p4k3y+11�4y+155−
y
∑

k=0

q4k5p4k3y1�4y+155

+

y
∑

k=0

q4k5p4k3y1�4y+155−
y
∑

k=0

q4k5p4k3y1�4y550 (36)

We are now going to consider separately the first two and
the last two terms in Equation (36) and show that both are
nonpositive. The first two terms can be expressed as −41 −

�4y + 155
∑y

k=041 − FT 4k55p4k3y1�4y + 155, which is nonposi-
tive. Next, we examine the second two terms, which can be
expressed as

y
∑

k=0

q4k5
∫ y+1

y

¡p4k3y1�4s55

¡s
ds

=

∫ y+1

y
ds

d�4s5

ds

y
∑

k=0

q4k5
¡p4k3y1�4s55

¡�4s5
0 (37)

Note that

y
∑

k=0

q4k5
¡p4k3y1�4s55

¡�4s5

=

y
∑

k=0

q4k5

(

y!

k!4y− k5!
4y− k5�4s5y−k−141 −�4s55k

− k�4s5y−k41 −�4s55k−1
)

= y
y−1
∑

k=0

q4k5p4k3y− 11�4s55

− y
y
∑

k=1

q4k5p4k− 13y− 11�4s55

= y
y−1
∑

k=0

41 − FT 4k55p4k3y− 11�4s551 (38)

so that (37) becomes

y
∑

k=0

q4k54p4k3y1�4y+ 155− p4k3y1�4y555

= y
∫ y+1

y
ds

d�4s5

ds

y−1
∑

k=0

41 − FT 4k55p4k3y− 11�4s550
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A sufficient condition for this last expression to be negative
is d�4s5/ds ≤ 0. Thus, ãL4y1�4y55≤ 0. Furthermore, consider
ã2L4y1�4y55, expressed as

−41 −�4y+ 255
y+1
∑

k=0

41 − FT 4k55p4k3y+ 11�4y+ 255

+ 41 −�4y+ 155
y
∑

k=0

41 − FT 4k55p4k3y1�4y+ 155

+ 4y+ 15
∫ y+2

y+1
ds

d�4s5

ds

y
∑

k=0

41 − FT 4k55p4k3y1�4s55

− y
∫ y+1

y
ds

d�4s5

ds

y−1
∑

k=0

41 − FT 4k55p4k3y− 11�4s550 (39)

Focusing on the first two terms in (39), we get

−41 −�4y+ 255
y+1
∑

k=0

41 − FT 4k55p4k3y+ 11�4y+ 255

+ 41 −�4y+ 155
y
∑

k=0

41 − FT 4k55p4k3y1�4y+ 155

= 41 −�4y+ 255
( y
∑

k=0

41 − FT 4k55p4k3y1�4y+ 255

−

y+1
∑

k=0

41 − FT 4k55p4k3y+ 11�4y+ 255
)

+

y
∑

k=0

41 − FT 4k55441 −�4y+ 155p4k3y1�4y+ 155

− 41 −�4y+ 255p4k3y1�4y+ 25550 (40)

The first term in (40) is equivalent to

41 −�4y+ 2552
( y
∑

k=0

pT 4k+ 15p4k3y1�4y+ 255
)

and is nonnegative. The second term in (40) is equal to

−

y
∑

k=0

41 − FT 4k55
∫ y+2

y+1

¡441 −�4s55p4k3y1�4s555

¡s
ds

or

−

y
∑

k=0

41 − FT 4k55
∫ y+2

y+1

¡441 −�4s55p4k3y1�4s555

¡�4s5

d�4s5

ds
ds0

Focusing on the last two terms in (39), we obtain

4y+15
∫ y+2

y+1
ds

d�4s5

ds

y
∑

k=0

41−FT 4k55p4k3y1�4s55

−y
∫ y+2

y+1
ds

d�4s5

ds

y−1
∑

k=0

41−FT 4k55p4k3y−11�4s55

+y
∫ y+2

y+1
ds

d�4s5

ds

y−1
∑

k=0

41−FT 4k55p4k3y−11�4s55

−y
∫ y+1

y
ds

d�4s5

ds

y−1
∑

k=0

41−FT 4k55p4k3y−11�4s55

=

∫ y+2

y+1
ds

d�4s5

ds

y
∑

k=0

41−FT 4k55

·44y+15p4k3y1�4s55−yp4k3y−11�4s555

+y
∫ y+2

y+1
ds
∫ s

s−1
d�

[y−1
∑

k=0

41−FT 4k55
¡

¡�

·

[

d�4�5

d�
p4k3y−11�4�55

]]

0 (41)

Thus,
∫ y+2

y+1
ds

d�4s5

ds

y
∑

k=0

41−FT 4k55

(

−
¡41−�4s55p4k3y1�4s55

¡�4s5

+4y+15p4k3y1�4s55−yp4k3y−11�4s55
)

+y
∫ y+2

y+1
ds
∫ s

s−1
d�

[y−1
∑

k=0

41−FT 4k55

·
¡

¡�

[

d�4�5

d�
p4k3y−11�4�55

]]

=−2
∫ y+2

y+1

ds

�4s5

d�4s5

ds

y
∑

k=0

41−FT 4k55p4k3y1�4s55

·4y41−�4s55−k−�4s55

+y
∫ y+2

y+1
ds
∫ s

s−1
d�

y−1
∑

k=0

41−FT 4k55
d2�4�5

d�2

+y
∫ y+2

y+1
ds
∫ s

s−1
d�×

(

d�

d�

)2 1
�4�541−�4�55

·

[y−1
∑

k=0

41−FT 4k55p4k3y−11�4�55

·44y−1541−�4�55−k5

]

0 (42)

A sufficient condition for the second line of (42) to be non-
negative is d2�4�5/d�2 ≥ 0. Since d�4s5/ds ≤ 0, a sufficient
condition for the first line of (42) to be nonnegative is that,
for given y,

y
∑

k=0

41 − FT 4k55p4k3y1�54y41 −�5− k−�5≥ 01 (43)

for any � ∈ 6�4y + 251�4y + 157, and for the third line
of (42) is that for given y,

∑y−1
k=041 − FT 4k55p4k3y − 11�5 ·

44y − 1541 − �5 − k5 ≥ 0, for any � ∈ 6�4y51�4y + 157. This
last condition is equivalent to the condition, for given y,
∑y

k=041 − FT 4k55p4k3y1�54y41 − �5 − k5 ≥ 0, for any
� ∈ 6�4y+ 151�4y+ 257. We next derive sufficient a condition
for (43). Note that

y
∑

k=0

41 − FT 4k55p4k3y1�54y41 −�5− k−�5

=

y−2
∑

k=0

41 − FT 4k55p4k3y1�54y41 −�5− k−�5

+ 41 − FT 4y− 155�y41 −�5y−141 − 4y+ 15�5

+ 41 − FT 4y5541 −�5y4−4y+ 15�51 (44)
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so that, for 4y + 15� ≤ 2, y41 − �5 − k − � ≥ 0 for all k =

01 0001 y− 2, and

y−2
∑

k=0

41 − FT 4k55p4k3y1�54y41 −�5− k−�5

≥ 41 − FT 4y− 255
y−2
∑

k=0

p4k3y1�54y41 −�5− k−�5

= 41 − FT 4y− 255
( y
∑

k=0

p4k3y1�54y41 −�5− k−�5

−�y41 −�5y−141 − 4y+ 15�5

− 41 −�5y4−4y+ 15�5
)

= 41 − FT 4y− 255
(

−� −�y41 −�5y−141 − 4y+ 15�5

−41 −�5y4−4y+ 15�5
)

0 (45)

Thus, the expression in (44) is nonnegative if 4FT 4y5 −

FT 4y − 25541 − �5y4y + 15+ 4FT 4y − 15− FT 4y − 255y41 − �5y−1 ·

44y + 15� − 15 ≥ 1 − FT 4y − 25. The left-hand side of this
expression can be rearranged as

4FT 4y5− FT 4y− 25541 −�5y4y+ 15

+ 4FT 4y− 15− FT 4y− 255y41 −�5y−144y+ 15� − 15

= 4pT 4y5+ pT 4y− 15541 −�5y4y+ 15

+ pT 4y− 15y41 −�5y−144y+ 15� − 15

= pT 4y541−�5y4y+15+pT 4y−1541−�5y
(

1+
y2�

1−�

)

≥ 41 −�5y4pT 4y54y+ 15+ pT 4y− 1550 (46)

Thus, 4FT 4y5 − FT 4y − 25541 − �5y4y + 15 + 4FT 4y − 15 −

FT 4y − 255y41 − �5y−144y + 15� − 15 ≥ 1 − FT 4y − 25 as long as
41 −�5y4pT 4y54y+ 15+ pT 4y− 155≥ 1 − FT 4y− 25 or

� ≤ 1 −

(

1 − FT 4y− 25
4y+ 15pT 4y5+ pT 4y− 15

)1/y

0

Combining this expression with 4y + 15� ≤ 2 and � ∈

6�4y+251�4y+157, and noting that for � = 0 the monotonic-
ity of ãL4y1�4y55 is assured, we obtain the final sufficient
condition

�4y+ 15 ≤ min
(

2
y+ 1

1

1 − min
(

11
(

1−FT 4y−25
4y+15pT 4y5+pT 4y−15

)1/y))

= min
(

2
y+ 1

1�T 4y+ 15
)

0 (47)

Given that ãL4y1�4y55 is a monotone function of y if
�4y5 is a nonincreasing convex function of y and if (47)
is satisfied, we establish the monotonicity of the optimal
staffing level y∗ with respect to changes in wr/we and
FT 4k5, following the same arguments used in the proof of
Proposition 1. �

Proof of Lemma 1. Note that for �1� ≥ 0, the func-
tion a4x5 = x�4x5 = x/41 + e�+�x5 defined on continuous set
x ≥ 0 has a unique global maximum x∗, which satisfies the
first-order optimality condition e−� = e�x

∗

4�x∗ − 15. Thus,
the maximum value for this function can be expressed
as x∗�4x∗5 = 41/�54�x∗/41 + e�+�x∗

55 = 4�x∗ − 15/�. This last
expression does not exceed 2 if and only if �x∗ ≤ 2�+ 1,
which is equivalent to e−� ≤ 2�e2�+1 ⇔ 2�e�+2�+1 ≥ 1.
This condition ensures that the maximum of y�4y5 cannot
exceed 2 for all integer values of y as well. Furthermore,
d2a/dy2 = �2�4y541−�4y554�41−2�4y55−25, which is always
nonpositive for �≤ 2. �

Proof of Proposition 4. Under (20), the optimal staffing
level y∗ satisfies (19), which can be re-expressed as y∗ =

min4y ∈ N+ � wr 41 − �4y55+wn�4y5− 4wr −wn5y4�4y + 15−

�4y55+weãL4y1�4y55 ≥ 05, where the last two terms inside
the bracket are

−4wr −wn5y4�4y+ 15−�4y55−we41 −�4y+ 155

·

y
∑

k=0

41 − FT 4k55p4k3y1�4y+ 155

+wey
∫ y+1

y
ds

d�4s5

ds

y−1
∑

k=0

41 − FT 4k55p4k3y− 11�4s55

= −we41 −�4y+ 155
y
∑

k=0

41 − FT 4k55p4k3y1�4y+ 155

+ y
∫ y+1

y
ds

d�4s5

ds

[

we

(y−1
∑

k=0

41−FT 4k55p4k3y−11�4s55
)

− 4wr −wn5

]

0 (48)

Thus,

wr 41−�4y∗55+wn�4y
∗5−we41−�4y∗

+155

·

y∗

∑

k=0

41−FT 4k55p4k3y
∗1�4y∗

+155

+y∗

∫ y∗+1

y∗

ds
d�4s5

ds

[

we

(y∗−1
∑

k=0

41−FT 4k55p4k3y
∗
−11�4s55

)

−4wr −wn5

]

≥0

or

y∗

∑

k=0

41 − FT 4k55p4k3y
∗1�4y∗

+ 155

≤

(

wr − 4wr −wn5�4y
∗5

+ y∗

∫ y∗+1

y∗

ds
d�4s5

ds

·

[

we

(y∗−1
∑

k=0

41 − FT 4k5

)

p4k3y∗
− 11�4s555

−4wr −wn5

])

4we41 −�4y∗
+ 1555−10 (49)
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Now, consider an element of E, yML, which satisfies

yML
= min

(

y ∈N+

∣

∣

∣

∣

y
∑

k=0

41 − FT 4k55p4k3y1�4y
ML55

≤
wr − 4wr −wn5�4y

ML5

we41 −�4yML55

)

1

so that

yML
∑

k=0

41 − FT 4k55p4k3y
ML1�4yML55≤

wr − 4wr −wn5�4y
ML5

we41 −�4yML55
0

Below we show by contradiction that, if a4y∗ + 15 < a4y∗5,
then yML ≤ y∗. Suppose that yML > y∗ ⇔ yML ≥ y∗ + 1. This,
in turn, implies that �4yML5≤ �4y∗ + 15 and

y∗

∑

k=0

41 − FT 4k55p4k3y
∗1�4yML55

>
wr − 4wr −wn5�4y

ML5

we41 −�4yML55
0 (50)

Now, since for ∀ s ∈ 6y∗1y∗ + 17, it follows that s ≤ yML and
�4yML5≤ �4s5, we can use (31), (32), and (50) to get

y∗−1
∑

k=0

41 − FT 4k55p4k3y
∗
− 11�4s55

≥

y∗

∑

k=0

41 − FT 4k55p4k3y
∗1�4s55

≥

y∗

∑

k=0

41 − FT 4k55p4k3y
∗1�4yML55

>
wr − 4wr −wn5�4y

ML5

we41 −�4yML55
0 (51)

Furthermore, since d�4y5/dy ≤ 0, (49) implies that

wr − 4wr −wn5�4y
ML5

we41 −�4yML55

<
y∗

∑

k=0

41 − FT 4k55p4k3y
∗1�4y∗

+ 155

≤

(

wr − 4wr −wn5�4y
∗5

+ y∗

∫ y∗+1

y∗

ds
d�4s5

ds

·

[

we

(y∗−1
∑

k=0

41 − FT 4k55p4k3y
∗
− 11�4s55

)

− 4wr −wn5

])

4we41 −�4y∗
+ 1555−1

≤
wr −4wr −wn5�4y

∗5+y∗4�4y∗ +15−�4y∗554wn/41−�4yML555

we41−�4y∗ +155

≤ 4wr − 4wr −wn5�4y
∗
+ 15+ y∗4�4y∗

+ 15−�4y∗55

· 4wn/41 −�4yML5555 · 4we41 −�4y∗
+ 1555−10 (52)

Equation (52) is equivalent to

�4yML5

1 −�4yML5
≤

�4y∗ + 15
1 −�4y∗ + 15

+
y∗4�4y∗ + 15−�4y∗5541/41 −�4yML555

41 −�4y∗ + 155
1

and

�4yML541 −�4y∗
+ 155 ≤ �4y∗

+ 1541 −�4yML55

+ y∗4�4y∗
+ 15−�4y∗551

so that

�4yML5≤ �4y∗
+ 15+ y∗4�4y∗

+ 15−�4y∗550

Note that this contradicts �4yML5≥ 0. �
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