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The electronic companion (EC) presents an extension of the main model to the case where

providers compete directly for customers in §EC.1. §EC.2 focuses on the free-at-the-point-of-care

(second-best) yardstick-competition scheme of §4.4 of the main paper and presents extensions

to multiple customer classes, time-varying arrival rates, more general cost structure, using tail-

statistics instead of average waiting time, provider heterogeneity, purely exogenous arrivals, and

more general queueing models. §EC.3 examines second-order conditions for the providers’ and

the regulator’s objective functions that ensure that first-order conditions (FOCs) are sufficient to

guarantee optimality. §EC.4 and §EC.5 present alternative payment schemes that achieve first- and

second-best equilibria, respectively, for which we can prove that the equilibrium is unique (i.e., rule

out the existence of asymmetric equilibria).

EC.1. Yardstick Regulation When Providers Compete

In some settings, service providers have to compete with each other for customers. For example,

urbanized areas may have multiple Emergency Departments (EDs) and patients may choose which

ED to visit based on information regarding waiting times. Such choice has been enhanced by online

tools that publish average ED waiting times (CMS 2016, ProPublica 2015). In this section, we

extend the model to allow providers to compete directly for customers based on waiting times

and, where applicable, on prices. This turns the analysis into a more complex bi-level game, where

customers choose service providers, and service providers choose their level of capacity and cost-

reduction effort.
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More specifically, we assume that N ≥ 2 identical competing providers exist that serve a single

catchment area. The notation and model in this section are similar to those introduced in Section 3

with the following straightforward extensions: the prices, capacity, and cost per patient at each

provider are given by p= (p1, p2, . . . , pN), µ= (µ1, µ2, . . . , µN), c= (c1, c2, . . . , cN), respectively, and

the vector Σ = (c,µ, p) summarizes all this information. Therefore, the customer arrival rate at

provider i in equilibrium will be given by λi (Σ), and let λ= (λ1, λ2, . . . , λN) and Ξ(Σ) =
∑N

i=1 λi (Σ).

We start by finding the equilibrium joining decisions of the customers. As in §3.1, service needs

arise through a stochastic process with rate Λ, and each customer with a service need may decide

to seek service or not. However, now he may choose among N providers and we assume that he

chooses the provider with the lowest total cost, as long as this cost is less than the benefit of

receiving the service, r. For simplicity, we ignore any differences in travel costs incurred by the

customer when choosing which provider to visit. In equilibrium, the individual arrival rates to each

provider λi(Σ) must satisfy the following conditions (see also Chen and Wan (2005), Afanasyev

and Mendelson (2010) for similar models):

If pi + tW (0, µi)> pj + tW (λj(Σ), µj) for some j, then λi(Σ) = 0, (EC1)

If λi(Σ)> 0 and λj(Σ)> 0 for i, j = 1, . . . ,N then pi +W (λi(Σ), µi) = pj +W (λj(Σ), µj), (EC2)

Ξ(Σ) = ΛΘ̄

(
min

i=1,...,N
{pi + tW (λi(Σ), µi)}

)
. (EC3)

It is easy to show the existence of a unique equilibrium λ that satisfies (EC1)–(EC3). Essentially,

condition (EC1) specifies that, in equilibrium, any provider i with higher total cost than some

provider j will have no customers. Similarly, condition (EC2) specifies that, in equilibrium, any

two providers with positive arrivals will have the same total costs. Together, these two conditions

ensure that no customer can increase their utility by switching from the more expensive to the

cheaper provider and imply (EC3).

The objective function for the providers is still given by (4) with λi(Σ) replacing λ(p,µ) for

provider i. Similarly, the objective of the regulator can be written as:

S(Σ) = V (Ξ(Σ))−
N∑
i=1

(tW (λi(Σ), µi) + ci)λi(Σ)−
N∑
i=1

R(ci, µi), (EC4)

subject to (9), where V (y) = Λ
∫∞

Θ̄−1(y/Λ)
xdΘ(x).

Throughout this section, we assume that there is a symmetric optimal solution for the regulator’s

optimization problem, denoted by Σ̂∗ = (ĉ∗, µ̂∗, p̂∗). This assumption implies that the regulator

finds it optimal to have all providers active. We also assume that FOCs are necessary and sufficient

for optimality.

We begin the analysis with the case when customers may be charged a fee for service. We first

establish that regulatory intervention is still needed despite competition.
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Proposition EC1. If providers compete and are free to choose their own prices, capacity, and

cost-reduction effort, first-best outcomes cannot be achieved in any equilibrium.

This result follows from the observation that, if all firms were to choose first-best actions, then at

least one firm will find it optimal to deviate. Therefore, first-best actions cannot be an equilibrium

outcome. A consequence of the proposition above is that direct competition between firms is

not sufficient to incentivize optimal behaviour in equilibrium. We next show that the cost-based

yardstick competition of Proposition 2 is not effective in incentivizing optimal capacity investment.

Proposition EC2. If providers compete and customers experience costly waiting time (t >

0), under the cost-based yardstick competition of Proposition 2, where the price, pi, and transfer

payment, Ti, are set by the regulator as given in (14) and (15), the firms’ installed capacity is the

minimum capacity level, µo, in all symmetric equilibria.

This result establishes that demand-side competition between providers is not sufficient to reinstate

the optimality of the cost-based yardstick competition. Despite the fact that any investment in

capacity will increase the demand of any individual provider at the expense of other providers, in

equilibrium, no provider wants to add capacity as the marginal value of the additional demand

is zero (because in equilibrium the reimbursement by the regulator is equal to providers’ cost).

We next show that the yardstick regulation that was shown to restore first-best outcomes in the

monopoly setting (Theorem 1), leads to first-best outcomes when providers compete as well.

Proposition EC3. Under the cost- and capacity-based yardstick competition scheme of Theo-

rem 1, where price, pi, and transfer payment, Ti, are set by the regulator as given in (16) and (17)

(with λi(Σ) replacing the arrival rate λi for provider i in the definitions), the unique symmetric

Nash equilibrium is for each provider i to pick the first-best outcomes (ĉ∗, µ̂∗). Also, all providers

make zero profit in equilibrium.

We now turn to the case where customers are not charged a fee to access the service, correspon-

ding to the analysis in Section 4.4 in the monopoly setting. We note that the objectives of the

regulator and the providers, as well as the arrival rates, are identical to those given above except

pi = 0 for all i= 1,2, . . . ,N . We again assume that a symmetric welfare maximizing solution exists

for the regulator’s problem, denoted by Σ̂∗ = (ĉ∗o, µ̂
∗
o) (with a slight abuse of notation). We refer

to this solution as the second-best. Unlike the case of first-best regulation, which was shown to be

robust to competition, we next show that the payment scheme proposed for the monopoly case

fails to generate second-best outcomes when firms compete.

Proposition EC4. If customers are not charged directly (i.e., pi = 0), and the regulator makes

a transfer payment, Ti, defined as in (23) to provider i, for i= 1, . . . ,N , the firms’ installed capacity

is the minimum capacity level µo in all symmetric equilibria.
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The proposed payment scheme fails to incentivize any capacity investment simply because com-

petition renders the benchmarking of waiting times irrelevant. Recall that, under this scheme, each

service provider is paid a fee which is proportional to the difference between the average waiting

time of every other provider and their own average waiting time. But if providers compete, in

equilibrium, all (active) providers will have the same waiting time, irrespective of their individual

capacity. Therefore, any investment in increasing capacity by provider i will be costly without

generating any reduction in waiting time for provider i compared to other providers.

To circumvent this issue, while still using a payment scheme that is relatively easy to implement,

we propose to set the wait-time benchmark using a similar market that operates independently from

the one we consider. To demonstrate, consider a case with 2N identical service providers, where

providers 1 through N , serve a different market to providers (N+1) through 2N , for example, EDs

in different urban areas. For each provider i, we define sets Si and Di as the indices of providers

who operate in the same area as provider i, and of those in the other area, respectively, for example,

S1 = {1, ...,N} and D1 = {N + 1, ...,2N}. Consider the reimbursement scheme with provider i’s

transfer payment equal to

Ti = t
(
W̄D
i − W̄ S

i

)
Nλi + R̄i +

(∑
j∈Di

cjλj −
∑

j∈Si,j 6=i

cjλj

)
, (EC5)

where W̄D
i , W̄ S

i , and R̄i are given by

W̄D
i =

1

|Di|
∑
j∈Di

Wj, W̄ S
i =

1

|Si|
∑
j∈Si

Wj, and R̄i =
1

|Di|
∑
j∈Di

Rj, (EC6)

and we use λi and Wi to denote the (equilibrium) arrival rate and the expected waiting time for

provider i. There are two main differences between this payment scheme and the scheme proposed

for the monopoly case, see (23): i) The waiting-time benchmark and the lump-sum compensation

(R̄i) are based on a set of providers that do not compete with provider i, and ii) the reward for

reducing wait time for each provider is multiplied by the number of competing providers, N . The

first difference helps to reinstate the power of relative benchmarking which competition had eroded.

The second difference serves to amplify the reward for providers who invest in reducing wait times,

which due to competition, is not localized but marketwide.

Proposition EC5. If the regulator makes the transfer payment, Ti, given in (EC5) to provider

i, for i= 1, ...,2N , and customers are not charged directly, the unique symmetric Nash equilibrium

is for each provider to choose the second-best outcomes (ĉ∗o, µ̂
∗
o). Also, all providers make zero profit

in equilibrium.
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In summary, the presence of competition does not affect the first-best yardstick competition in

any way. The second-best scheme is affected but this can be circumvented if, for every provider

the regulator can identify a set of non-competing and a set of competing providers, and set the

waiting-time and cost benchmarks based on the first set and the rewards based on the size of the

second set.

EC.1.1. Proofs of the Results in Section EC.1

We first present some properties of equilibrium points that we later use in the proofs. Throughout

we use “d” for derivative and “∂” for partial derivative.

Lemma EC1. Let Σ = (c,µ, p) be such that λi(Σ)> 0 for all i= 1,2, . . . ,N . Then

i) λj(·) is increasing in µj and decreasing in pj and λi(·) is decreasing in µj and increasing in

pj, for all i, j = 1,2, . . . ,N ,

ii) λi(·) is differentiable with respect to µi and pi for all i, j = 1,2, . . . ,N , at Σ and

dW (λi(Σ), µi))

dµi
=
dW (λj(Σ), µj))

dµi
, i, j = 1,2, . . . ,N. (EC7)

The proof follows from (EC2)–(EC3) and the implicit function theorem using standard arguments,

hence we omit the details.

Proof of Proposition EC1: Let Σi and Σ−i denote the actions of provider i and of all providers

except provider i, and let Σ̂∗i and Σ̂∗−i denote first-best actions (under competition) for provider i

and of all providers, except provider i, respectively, for i= 1, ...,N .

We first show that the first-best price, p̂∗, cost per customer, ĉ∗, capacity, µ̂∗, and trans-

fer payment, T̂ ∗, (in the competition case) are the unique solution to (10)–(13). We set Σ̂∗ =

(ĉ∗, ..., ĉ∗, µ̂∗, ..., µ̂∗, p̂∗, ..., p̂∗). By (EC4), ĉ∗, µ̂∗, and λi(Σ̂
∗) satisfy (10) because the optimal solution

is symmetric.

By Leibniz rule

∂

∂y

(
Λ

∫ ∞
Θ̄−1( y

Λ)
xdΘ(x)

)
=−ΛΘ̄−1

( y
Λ

)
θ
(

Θ̄−1
( y

Λ

)) ∂Θ̄−1
(
y
Λ

)
∂y

= Θ̄−1
( y

Λ

)
for y ∈ [0,Λ]. (EC8)

Let v : [0,Λ]→ [0,∞) be defined by

v(λ) = Θ̄−1(λ/Λ). (EC9)

In words, v(λ) is the marginal value of the marginal customer (i.e., the customer who is indifferent

between joining a provider to receive service and not joining) when the arrival rate is λ.

By (EC4) and (EC8)

∂S(Σ)

∂pj
=
∂Ξ(Σ)

∂pj
v (Ξ(Σ))−

N∑
i=1

(
t
∂λi(Σ)

∂pj

∂W (λi(Σ), µi)

∂λ

)
λi (Σ)
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−
N∑
i=1

(tW (λi(Σ), µi) + ci)
∂λi (Σ)

∂pj

=
∂Ξ(Σ)

∂pj

(
pi− ci− tλi(Σ)

∂W (λi(Σ), µi)

∂λ

)
,

where the second equality follows from our assumption that the optimal solution is symmetric.

Hence (12) holds in this case as well.

Now

∂S(Σ)

∂µj
=
∂Ξ(Σ)

∂µj
v (Ξ(Σ))−

N∑
i=1

(
t
∂λi(Σ)

∂µj

∂W (λi(Σ), µi)

∂λ

)
λi (Σ)

− t ∂
∂µ
W (λj(Σ), µj)λj (Σ)−

N∑
i=1

(tW (λi(Σ), µi) + ci)
∂λi (Σ)

∂µj
− ∂

∂µ
R(cj, µj)

=− t ∂
∂µ
W (λj(Σ), µj)λj (Σ)− ∂

∂µ
R(cj, µj),

where the first equality follows from (EC8), and the second equality follows again from our assump-

tion that the optimal solution is symmetric and from (12). Hence (11) holds in this case as well.

The first-best transfer payment, T̂ ∗, is obtained by solving for Π(ĉ∗, µ̂∗|p̂∗, T̂ ∗) = 0, which leads to

(13) by (4).

We next show that, if all providers j 6= i choose first-best outcomes Σ̂∗−i, provider i’s best response

is not Σ̂∗i . By (4)

Πi(ci, µi|pi, Ti,Σ−i) = (pi− ci)λi(Σ)−R(ci, µi) +Ti, i= 1, ...,N. (EC10)

By (11), (12), (EC10), and the fact that we assume the optimal solution is symmetric we have

∂

∂µi
Πi(p̂

∗, ĉ∗, µ̂∗|T̂ ∗i , Σ̂∗−i) = (p̂∗− ĉ∗)∂λi(Σ̂
∗)

∂µi
− ∂R(ĉ∗, µ̂∗)

∂µ

= tλi(Σ̂
∗)
∂

∂λ
W (λi(Σ̂

∗), µ̂∗)
∂λi(Σ̂

∗)

∂µi
− ∂R(ĉ∗, µ̂∗)

∂µ

= tλi(Σ̂
∗)
dWi(λi(Σ̂

∗), µ̂∗)

dµi
.

(EC11)

Hence, it is enough to show that dWi(λi(Σ̂
∗),µ̂∗)

dµi
6= 0 to complete the proof. Because θ (the derivative

of Θ) is non-zero by assumption, v is differentiable and v′(λ)< 0 for all λ≥ 0. Hence there exists

ε > 0 such that

v′(Ξ(Σ̂∗))<−ε. (EC12)

Now assume that dWi(λi(Σ̂
∗),µ̂∗)

dµi
= 0. By Lemma EC1(ii) this implies that

dWj(λj(Σ̂∗),µ̂∗j )

dµi
= 0 for all

j = 1,2, . . . ,N . Hence, there exists a sequence δ(n) ↓ 0 such that for µi(n) = µ̂i + δ(n)

W (λi(Σ̂
∗(n)), µi(n))≥W (λ̂i(Σ̂

∗), µ̂∗i )− δnε/2, and (EC13)
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W (λj(Σ̂
∗(n)), µ̂∗j )≥W (λj(Σ̂

∗), µ̂∗j )− δnε/2, j ∈ {1, . . . ,N} \ i, (EC14)

where Σ̂∗(n) is equal to Σ̂∗ except for service rate at server i, which is equal to µi(n). By (EC3),

(EC13), and (EC14)

v(Ξ(Σ̂∗n))> v(Ξ(Σ̂∗))− δnε/2. (EC15)

This contradicts (EC12). �

Proof of Proposition EC2: The proof is identical to that of Proposition 3 and is omitted for

brevity.

Proof of Proposition EC3: We show that the cost- and capacity-based yardstick payment

scheme achieves first-best in equilibrium using the fact that the first-best price, p̂∗, cost per cus-

tomer, ĉ∗, capacity, µ̂∗, and transfer payment, T̂ ∗, are the unique solution to (10)–(13) – a result

we proved while proving Proposition EC1 – under the assumption that FOCs are necessary and

sufficient to obtain the optimal actions of each provider. By (17), provider i’s objective function is

Πi(ci, µi|pi, Ti,Σ−i) =(c̄i− ci)λ̄i(Σ)−R(ci, µi) + R̄i + tλ̄i(Σ)
∂

∂µ
W (λ̄i(Σ), µ̄i)(µ̄i−µi). (EC16)

Let aj = (c̃, µ̃) denote the actions of provider j for all j 6= i. Then, by (EC16), the FOCs of provider

i’s profit function are

∂

∂µi
Πi(ci, µi|pi, Ti, Σ̃−i) = (c̃− ci)

∂λ̄i(Σ)

∂µi
− tλ̄i(Σ)

∂

∂µ
W (λ̄i(Σ), µ̃)

+
d

dµi

(
tλ̄i(Σ)

∂

∂µ
W (λ̄i(Σ), µ̃)

)
(µ̃−µi)−

∂

∂µi
R(ci, µi),

(EC17)

∂

∂ci
Πi(ci, µi|pi, Ti, Σ̃j) =− ∂

∂ci
R(ci, µi)− λ̄i(Σ) + (c̃− ci)

∂λ̄i(Σ)

∂ci

+
d

dci

(
tλ̄i(Σ)

∂

∂µ
W (λ̄i(Σ), µ̃)

)
(µ̃−µi),

(EC18)

where Σ̃−i is the vector of cost, c̃, capacity, µ̃, and price, pj, for all firms j 6= i.

If cj = ĉ∗ and µj = µ̂∗ for all j = 1, ...,N , then ∂
∂µi

Πi = 0 and ∂
∂ci

Πi = 0 by (10)–(12). Also

because (10)–(12) have a unique solution, so do (16), (EC17), and (EC18). In addition, because

FOCs are necessary and sufficient to obtain the optimal actions of each provider, (ĉ∗, µ̂∗) is a Nash

equilibrium where, clearly, providers make zero profit by (EC16). The uniqueness of the symmetric

Nash equilibrium follows from the uniqueness of the outcomes that satisfy the FOCs of the welfare

function, S, similar to the argument in the proof of Theorem 1. �

Proof of Proposition EC4: Let Γ = (µ1, ..., µN) denote the vector of capacities of all providers

and similarly let Γ−i denote the capacities of all providers except provider i. Let Πi(ci, µi|Ti,Γ−i)
denote the profit of provider i given by (24) with λ(Γ) replacing λ(µ) in all relevant definitions. By

assumption ∂R(ci,µi)

∂µi
> 0 and by Lemma EC1, ∂

∂µi
Πi(ci, µi|Ti,Γ−i)< 0 for all µi ≥ µo and ci, giving

the desired result. �
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Proof of Proposition EC5: Let µ̂∗o and ĉ∗o denote optimal capacity and cost values for the regu-

lator when the customers are not charged directly for service in the competition case and Γ̂∗ =

(µ̂∗o, ..., µ̂
∗
o). We denote the equilibrium arrival rate to provider i by λi(Γ) when customers are not

charged (i.e. pi = 0 for all i) and providers choose the capacity vector Γ. Similar to the proof of

Proposition EC3, by (EC4) the FOCs for welfare-maximizing actions with no fee are given by

∂R(ĉ∗o, µ̂
∗
o)

∂µi
=−

N∑
j=1

(
tλj(Γ̂

∗)
dWj(λj(Γ̂

∗), µ̂∗o)

dµi
+ ĉ∗o

∂λj(Γ̂
∗)

∂µi

)
, i= 1, ...,N, (EC19)

∂R(ĉ∗o, µ̂
∗
o)

∂c
=−λi(Γ̂∗), (EC20)

T̂ ∗o = ĉ∗oλi(Γ̂
∗) +R(ĉ∗o, µ̂

∗
o). (EC21)

Recall that we consider the special case with providers 1 through N , and providers (N + 1)

through 2N serve a different market. Therefore, the arrival rate of provider i depends only on the

capacity of providers that operate in the same market, that is,

∂λj(Γ̂
∗)

∂µi
= 0 for j ∈Di. (EC22)

By (EC5), provider i’s profit under this payment scheme is given by

Πi(ci, µi|Ti,Σ−i) =−
∑
j∈Si

cjλj(Γ) + t
(
W̄D
i − W̄ S

i

)
Nλi(Γ)−Ri(ci, µi) + R̄i

+
∑
j∈Di

cjλj(Γ), i= 1, ...,2N, (EC23)

where W̄D
i , W̄ S

i , and R̄i are as given in (EC6). We next show that there is a unique symmetric

equilibrium. Let aj = (c̃, µ̃) denote the actions of provider j for all j 6= i. Without loss of generality,

we focus on the profit of provider 1, for which S1 = {1, ...,N} and D1 = {N +1, ...,2N}. By (EC22)

and (EC23), the FOCs for provider 1’s profit function are

∂

∂µ1

Π1(c1, µ1|T1,Σ−1) =−
N∑
j=1

cj
∂λj(Γ)

∂µ1

− tλ1(Γ)
N∑
j=1

d

dµ1

W (λj(Γ), µj)−
∂R(c1, µ1)

∂µ1

, (EC24)

∂

∂c1

Π1(c1, µ1|T1,Σ−1) =−λ1(Γ)− ∂R(c1, µ1)

∂c1

. (EC25)

If c̃= ĉ∗o and µ̃= µ̂∗o, then by (EC19), (EC20), (EC24) and (EC25), c1 = ĉ∗o and µ1 = µ̂∗o would yield

∂Π1
∂µ1

= 0 and ∂Π1
∂c1

= 0. Because FOCs are assumed to be necessary and sufficient to obtain providers’

optimal actions, (ĉ∗o, µ̂
∗
o) is a Nash equilibrium. Because (EC19) and (EC20) have a unique solution,

so do (EC24) and (EC25); and thus, (ĉ∗o, µ̂
∗
o) is the unique symmetric Nash equilibrium. Finally,

by (EC23) and because |Si|= |Di|, providers’ equilibrium profit is zero. �
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EC.2. Modeling Extensions

In this section, we discuss how yardstick competition could be implemented under more general

conditions than those of §4. Namely, we look at the case of multiple customer classes, time-varying

arrival rates, more general cost structure, using tail-statistics instead of average waiting time,

provider heterogeneity, purely exogenous arrivals, and more general queueing models. Although

it is possible to present these extensions for the first-best yardstick competition of §4.3, we have

chosen to restrict attention to the simpler second-best yardstick competition of §4.4, which we

believe to be of more practical relevance. For all extensions, we assume that the FOCs are necessary

and sufficient for determining the unique solution to the regulator’s welfare maximization problem

and that each provider’s objective is concave with the new payment scheme for each extension.

EC.2.1. Multiple Customer Classes and Time-varying Arrival Rates

In most practical settings, there are multiple customer classes with different service needs utilizing

the same limited resources, and there are settings where the arrival rates are time varying. For

example, in emergency care patients are triaged into different levels based on their severity, and

arrival rates are much higher during the day than the evenings (Armony et al. 2015). The way

that the payment mechanisms need to be modified to account for these two additional features are

somewhat similar, so we focus on the extension for multiple customer classes and then explain how

the time-varying arrivals can be handled in a similar manner.

Assume for simplicity that each provider caters to two different customer classes. We use the

model presented in §3.1 for customer joining behavior, but we append a superscript j to denote

the quantity associated with each customer class j, that is, Λ(j),Θ(j), and t(j) are all assumed to

depend on the customer class. Because customers from both classes use the same resources, the

average waiting time of each class not only depends on the service rate and the arrival rate for that

class but also depends on those of the other class, as well as the priority policy. We assume that all

providers follow the same priority policy and that the class a customer belongs to is observable to

the provider. For example, in emergency care patients are prioritized according to their severity

levels and a similar triage method is used across hospital EDs (see McHugh et al. (2012) and Gilboy

et al. (2011)).

The service rate of type i customers is denoted by µ(i) and we assume that the provider can

invest in increasing service rates and/or reducing cost per patient at a cost given by R(c,µ(1), µ(2)).

Let W (j)(µ(1), µ(2), λ(1), λ(2)) denote the expected waiting time for customer class j if the service

and arrival rates of each class are given by µ(j) and λ(j), j = 1,2, where λ(j) satisfies (2) (with the

average waiting time definition extended as described). For notational simplicity, we denote the
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expected wait by W (j) and in provider i by W
(j)
i for class j. The objective of the regulator with

two customer classes is

S
(
c,µ(1), µ(2)

)
=

2∑
j=1

Λ(j)

∫ Mr

t(j)W (j)

(
x− t(j)W (j)

)
dΘ(j)(x)− c

(
λ(1) +λ(2)

)
−R

(
c,µ(1), µ(2)

)
. (EC26)

Let c∗, µ(1),∗ and µ(2),∗ denote the optimal solution to (EC26). The model can easily be extended

to the case for which the cost c depends on the customer class as well. Set the transfer payment

to provider i to

Ti = t(1)
(
W̄

(1)
i −W

(1)
i

)
λ̄

(1)
i + t(2)

(
W̄

(2)
i −W

(2)
i

)
λ̄

(2)
i + R̄i + c̄i

(
λ̄

(1)
i + λ̄

(2)
i

)
, (EC27)

where, similar to (15),

λ̄
(j)
i =

∑
k 6=i λ

(j)
k

N − 1
, W̄

(j)
i =

∑
k 6=iW

(j)
k

N − 1
and R̄i =

∑
k 6=iR

(
ck, µ

(1)
k , µ

(2)
k

)
N − 1

, i= 1, . . . ,N, and j = 1,2.

(EC28)

Then, in the unique symmetric equilibrium, each provider picks c∗, µ(1),∗, and µ(2),∗. The proof

is very similar to that of Proposition 2 and, in the interest of brevity, is omitted. We note that

the transfer payment in the case of multiple patient classes given in (EC27) is a rather straig-

htforward extension to that of the single patient class. It consists of the total expected cost(
R̄i + c̄i

(
λ̄

(1)
i + λ̄

(2)
i

))
of providing service across all customers (i.e., it is not necessary to know

the exact breakdown of this cost across different customer classes), plus a customer-class-specific

fee that is increasing in the difference between the industry-wide and the specific provider waiting

time for that customer class. Extensions to more customer classes are also straightforward.

If arrival rates are time-varying, the proposed scheme can be modified similarly if the potential

and actual arrival rates (Λ and λ in our notation, respectively) are assumed to remain constant

in non-overlapping intervals, and if expected waiting times for any customers arriving in the same

interval are the same. Although this approach ignores the transient behavior of the queues going

from one interval to the other, if the service times are relatively short compared to the rate of

change in arrivals, it should yield accurate results. This approach is widely used in call centers, see

Gans et al. (2003). If service times are longer than the rate of change in arrivals, as may be the

case in EDs, then two customers may experience different waiting times, even though their times

of arrival are not far apart. One potential solution in this case is to divide the day into multiple

smaller intervals. For example, Armony et al. (2015) has documented that there are four distinct

intervals in terms of occupancy in an Israeli ED with two relatively “stationary” periods, first

from 3am to 9am and second from 12pm to 11pm and two transient periods in between these two
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stationary periods. Theoretically, by dividing the transient periods into multiple periods, one can

ensure that waiting times experienced by patients who arrived in these sub-intervals are similar.

To demonstrate the yardstick scheme in a system with time-varying arrivals, assume that there

are two intervals in one day during which the arrival rates are assumed to be constant and customers

who arrive in the same interval experience the same expected waiting times. We consider only

one customer class and assume that customers do not choose strategically when to arrive. With a

slight abuse of notation let W (j)(µ(1), µ(2), λ(1), λ(2)) denote the expected waiting time for customers

arriving during period j if the service and arrival rates during each time interval are given by µ(j)

and λ(j), j = 1,2. Then, if the regulator sets the transfer payment, as in (EC27) (with the averages

defined over time intervals instead of customer classes), it can be shown that socially optimal

choices for the providers is a unique symmetric Nash equilibrium.

In summary, in the presence of multiple customer classes and time-varying arrival rates, the

regulator needs to augment the yardstick competition model of §4.4 by making the transfer payment

contingent on the relative performance of the provider for each customer class and each time

interval. For example, in the case of ED, the day can be broken into four intervals (as per Armony

et al. (2015)) and average wait times for each of the five triage levels (as per McHugh et al. (2012))

can be compared in these intervals.

EC.2.2. Extending the Cost Model

The model we used for the regulator’s and the providers’ objective can be extended to the case

when the cost per customer also depends on the service rate, for example, treating patients faster

affects the cost per patient. We could do this by assuming that the marginal cost, c, is no longer

a decision variable itself, but is instead a non-negative valued function, c(e,µ), of costly effort

(denoted by e), and the service rate µ. Similarly, the total investment cost would also be the

function R(e,µ). The mechanisms proposed in §§4.3–4.4 would still result in first- and second-best

outcomes in equilibrium with the definitions of c̄i and R̄i modified as follows

c̄i =
1

N − 1

∑
j 6=i

cj(e,µ) and R̄i =
1

N − 1

∑
j 6=i

R(ej, µj)

in payment schemes (16)-(17) and (23).

EC.2.3. Yardstick Competition Using Tail Statistics

An alternative to incentivizing service providers based on their average wait is to use the tail

statistics of their wait time, for example, the fractile of the wait time distribution. For example, in

order to incentivize EDs to reduce their wait times, Monitor, the UK hospital regulator, mandates

EDs to admit or discharge 95% of the patients within four hours of their arrival, and financially

penalizes the hospitals that fail to reach this target (Campbell 2016). Since the welfare-maximizing
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performance target cannot be computed by the regulator without knowing the cost function R(c,µ)

or the patient equilibrium arrival rate λ(c,µ), the yardstick competition that we propose in §§4.3–

4.4 can be modified to achieve first- and second-best outcomes by using tail statistics of wait

time.

To demonstrate, assume that the utility of a customer is given by r − tΣ(λ,µ)− p for a non-

negative function Σ (the model in §3.1 is a special case). For example, if the regulator believes

that customers’ utility depends on the probability of waiting more than four hours, then Σ(λ,µ) =

E[1{w(λ,µ)≥ 4}], where w is the (random) waiting time of a customer in steady state. Similarly,

if the regulator believes that customers’ utility depends on 95% fractile of waiting times, then

Σ(λ,µ) =H−1
λ,µ(95%), where Hλ,µ is the distribution of the waiting time in steady-state when arrival

and service rates are λ and µ, respectively. Then, the proposed schemes still lead to first- and

second-best outcomes in equilibrium if the function W is replaced by Σ in (16)–(17) or (22)–(24).

EC.2.4. Heterogeneous Hospitals

To implement the proposed regulatory schemes, it was assumed that the regulator was able to

identify (at least pairs of) identical providers. In many real-world settings, such as hospital EDs,

this might not be possible because hospitals may differ along multiple dimensions, for example, the

size of their respective catchment areas Λ, the distribution of customer benefits Θ(.) (e.g., due to

case mix variation), and due to differences in the local labor markets giving rise to different costs

of treatment, c, capacity, µ, and investment cost, R(c,µ). Nevertheless, if the regulator is able to

observe the characteristics that make the providers differ, the proposed schemes can be modified

in a way similar to Shleifer (1985).

To illustrate, note that to implement the second-best yardstick competition the regulator needs

to be able to project the total cost, total number of customer arrivals, and average waiting time

of each provider. Assume that each provider exhibits a different total cost fi(µ, c, δ) = ci(δ)λi(δ) +

Ri(δ), arrival rate λ(µ, δ), and waiting time Wi(µ, δ), where δ is a vector containing all observable

characteristics that make providers different. Also, assume that δ is not under the control of the

providers. Then the regulator can use the information on the total costs, arrival, and average

waiting times of all other providers along with the vector of observable characteristics, to predict

the expected costs of each provider. For example, this could be achieved through a multivariate

panel regression or indeed any other method (e.g., machine learning). If the predictive model is

100% accurate in predicting costs, and all the observable characteristics are correctly accounted

for, the proposed scheme generates the socially optimal equilibrium. Obviously, as the explanatory

power of the model used by the regulator degrades, so will the value of using yardstick competition.1

1 An alternative scheme, which can be particularly useful as the unexplained heterogeneity between providers is
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EC.2.5. Exogenous Arrivals

In certain situations, patients might not have a choice but seek service from the provider regardless

of wait times, for example, cancer patients seeking chemotherapy treatment. In those cases, λ is

exogenous (i.e., not a function of µ) and can be assumed to be fixed in our model. Then it can

be shown, as in Theorem 2, that the payment scheme (23) still yields the second-best outcomes in

equilibrium. More specifically, the regulator’s objective can be written in this case as

S(c,µ) = V (λ) + (p− c)λ−R(c,µ), (EC29)

and the FOCs for an optimal point (c∗o, µ
∗
o) become

∂

∂c
R(c∗o, µ

∗
o) =−λ,

∂

∂µ
R(c∗o, µ

∗
o) =−tλ d

dµ
W (λ,µ∗o),

T ∗o =R(c∗o, µ
∗
o),

which are similar to those in Proposition 4.

Under the payment scheme defined in (23), the providers’ objective becomes

Π(ci, µi|Ti) =−cλ+ t(W̄i−Wi)λ−R(ci, µi) + R̄i + c̄iλ. (EC30)

It is easy to show that the unique equilibrium is the second best by using the FOCs for the provider

and the regulator (under the assumption that FOCs for the provider are necessary and sufficient).

The proof is identical to that of Theorem 2, and hence is omitted.

EC.2.6. More Complex Queueing Systems

Motivated by analytical tractability, the model assumes that providers can only control waiting

times through a single parameter µ. In general this may not be true, for example, in EDs, patients

are treated using different resources in multiple treatment steps. Our results can be extended to

cover such queueing networks as follows.

Assume that patients arrive at the provider i at rate λi and need to go through m stages that are

served by n resources, for example, providers, bed or imaging equipment. Let µi = (µi1, . . . , µin)

denote the capacities of these n resources for provider i. Assume that the provider has control over

µi and the expected waiting times (W) are determined by λi and µi. Then it can be shown that

the payment mechanism (23) still leads to second-best outcomes in equilibrium.

relatively high, is the modified yardstick competition proposed by Laffont and Tirole (1993), pp 84-86, where the
regulator offers a menu of incentive-compatible yardstick-competition contracts and allows providers to self select.
Although this may be more complex to implement, it has the potential to further reduce the inefficiency associated
with asymmetric information and heterogeneous providers. It cannot, however, restore socially optimal outcomes and
the more efficient providers retain positive rents.
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To obtain the socially optimal outcomes in equilibrium in the first best, the payment scheme

needs to be modified slightly to result in the following profit function:

Π(ci, µi|pi, Ti) = (c̄i− ci)λ̄i + tλ̄i

n∑
j=1

∂

∂µij
W (λ̄i, µ̄i)(µ̄ij −µij)−R(ci,µi) + R̄i, (EC31)

where

µ̄i =
1

N − 1

∑
j 6=i

µi and µ̄ik =
1

N − 1

∑
j 6=i

µjk. (EC32)

We highlight the fact that the topology of the underlying queueing system of the ED is not

important, for example, it could be a complex Jackson network, and our results still apply as long

as the FOCs are necessary and sufficient for the regulator and the providers. However, increased

complexity of the underlying queueing system imposes more informational burden on the regulator

to implement the first-best scheme as the regulator needs to know the number of steps involved in

treating a patient as well as the impact of the capacity of each step on waiting times ( ∂
∂µij

W (λ̄i, µ̄i)),

see (EC31). However, the required information to achieve second best is not affected.

EC.3. Conditions

As is often the case in queueing games, we have made the assumption that FOCs are necessary

and sufficient for both the regulator’s and the individual provider’s problems (see for example

Mendelson and Whang (1990)). This assumption, however, may not always hold (Stidham 2009).

For this reason, in this section, we present additional conditions which ensure that FOCs are

sufficient for the specific case of the M/M/1 queue. More specifically, we provide sufficient (but

not necessary) conditions for:

• FOCs to be necessary and sufficient for determining the first- and second-best solutions of

the regulator’s welfare maximization problem of Propositions 1 and 4 (see Appendices EC.3.1 and

EC.3.4, respectively).

• FOCs to be necessary and sufficient for the provider’s profit maximization problem under the

payment schemes of Propositions 2, Theorems 1 and 2 (see Appendices EC.3.2, EC.3.3, and EC.3.5,

respectively).

Where applicable, we compare the conditions presented here to the closest extant literature (Shlei-

fer 1985). We note that these conditions can all be interpreted as either assumptions about the

cost function R(c,µ), which, loosely speaking, needs to be “sufficiently” convex for the objective

functions to be well-behaved, or about the default capacity µo (and default cost co), which needs

to be sufficiently small (large) to allow for interior solutions. We also note that these conditions

are sufficient but by no means necessary.
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EC.3.1. Assumptions for Proposition 1: Regulator’s First-best Solution

We present sufficient conditions for the FOCs to be necessary and sufficient to obtain the regulators’

optimal (first-best) actions. We begin by defining λ∗(c,µ)∈ [0,Λ] by

Θ̄−1

(
λ∗(c,µ)

Λ

)
=

tµ

(µ−λ∗(c,µ))2
+ c, (EC33)

and µ∗(c)≥ µo by

tλ∗(c,µ∗(c))

(µ∗(c)−λ∗(c,µ∗(c))2
=

∂

∂µ
R(c,µ∗(c)) (EC34)

for c∈ (0, co] and µ≥ µo. We show that λ∗(c,µ) and µ∗(c) are well-defined in the proof of Proposition

EC6 below. We next define Conditions 1–5 that are used in the next proposition.

Condition 1: λ∗(c,µ)

(µ−λ∗(c,µ))2
is decreasing in µ for µ≥ µo and c∈ (0, co],

Condition 2: tλ∗(c,µo)

(µo−λ∗(c,µo))2
− ∂R(c,µo)

∂µ
> 0 for c∈ (0, co],

Condition 3:
(
−λ∗(c,µ∗(c))− ∂R(c,µ∗(c))

∂c

)
is decreasing in c for c∈ (0, co],

Condition 4: λ∗(0, µ∗(0))<−∂R(0,µ∗(0))

∂c
,

Condition 5: λ∗(co, µ
∗(co))>−∂R(co,µ

∗(co))

∂c
.

Proposition EC6. Conditions 1–5 are sufficient for the FOCs to be necessary and sufficient

for the regulator’s welfare maximization problem to define the first-best solution.

Conditions 2, 4, and 5 are the boundary conditions that guarantee that first-best outcomes are

interior. Condition 1 ensures the concavity of welfare function in capacity µ for all c∈ (0, co] when

customers join at rate λ∗(c,µ). For instance, Condition 1 holds if the utilization in the system is

decreasing in capacity (for all cost levels) when customers join in a socially optimal manner, that

is, λ∗(c,µ)

µ
is decreasing in µ. Condition 3 is a necessary and sufficient condition for the concavity

of welfare function in cost per customer, c, when customers join at rate λ∗(c,µ) and the provider

chooses capacity level µ∗(c).

The boundary conditions given in Conditions 2, 4, and 5 essentially impose constraints on the

marginal cost of waiting-time- and cost-reduction investments. For instance, Conditions 2 and

5 require that the marginal costs of capacity and cost investments are sufficiently small at the

initial capacity, µo, and cost, co. Alternatively, given the convexity of investment cost function,

R, these conditions can also be interpreted as the initial capacity, µo, being sufficiently small

and the initial cost, co, being sufficiently high. They imply that the regulator always prefers to

invest in cost reduction or in capacity, even when the other parameters are not chosen optimally.

Similarly, Condition 4 requires the marginal cost at zero cost per customer to be sufficiently large,

for example, Condition 4 holds if marginal cost at c= 0 is greater than the size of the catchment

area, Λ.
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Conditions 3–5 are similar to the conditions in Shleifer (1985) (given in (EC45) and (EC46))

that guarantee that FOCs are sufficient if waiting time is not costly. The only difference is that

Shleifer (1985) inherently assumes that capacity is fixed at its default level, µo, and hence defines

conditions for capacity level µo instead of µ∗(c).

Proof of Proposition EC6: We proceed in three main steps.

Step i) First we show that for fixed c ∈ [0, co] and µ ∈ [µo,∞) there exists a unique p ≥ 0,

denoted by p∗(c,µ), that maximizes S(p, c,µ), that is,

S(p∗(c,µ), c, µ) = max
p≥0

S(p, c,µ).

Step ii) Then we show that for fixed c∈ [0, co], µ
∗(c) defined in (EC34) is unique and maximizes

S(p∗(c,µ), c, µ), that is,

S(p∗(c,µ∗(c)), c, µ∗(c)) = max
µ≥µo

S(p(c,µ), c, µ).

Step iii) Next we show that there exists a unique c∗ ∈ (0, co) that maximizes

S(p∗(c,µ∗(c)), c, µ∗(c)), that is,

S(p∗(c,µ∗(c∗)), c∗, µ∗(c∗)) = max
0≤c≤co

S(p(c,µ), c, µ∗(c)).

We provide the details of these steps next.

Step i) To prove the existence and uniqueness of p∗(c,µ) we show that S(p, c,µ) is a concave

function of p and p∗(c,µ) is not at the boundaries, that is, p∗(c,µ)∈ (0,∞), for fixed c∈ [0, co] and

µ∈ [µo,∞). By (7) we have

∂

∂p
S(p, c,µ) = f(p, c,µ)

∂

∂p
λ(p,µ), (EC35)

where, by (EC8), f is given by

f(p, c,µ) := Θ̄−1

(
λ(p,µ)

Λ

)
− tµ

(µ−λ(p,µ))2
− c. (EC36)

By (3) we have

∂

∂p
λ(p,µ)< 0, for p≥ 0 and µ≥ µo. (EC37)

Therefore, to show S(p, c,µ) is concave in p it is enough to show that f(p, c,µ) is increasing in p.

By (EC36)

∂

∂p
f(p, c,µ) =

(
v′(λ(p,µ))− 2tµ

(µ−λ(p,µ))3

)
∂

∂p
λ(p,µ). (EC38)
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(We use ′ to denote the derivative of functions whose domain is one dimensional). We have v′(y)< 0

for all y ∈ [0,Λ] because θ(x)≥ 0 for x≥ 0, and that λ(p,µ)<µ by (3). Hence f(p, c,µ) is increasing

in p.

To show that p∗(c,µ) > 0 and is unique, we next show that ∂
∂p
S(0, c, µ) > 0 and

limp→∞
∂
∂p
S(p, c,µ)< 0. By (EC36)

f(0, c, µ) = v (λ(0, µ))− tµ

(µ−λ(0, µ))2
− c=

t

µ−λ(0, µ)
− tµ

(µ−λ(0, µ))2
− c < 0, (EC39)

where the second equality follows from (3), giving ∂
∂p
S(0, c, µ)> 0. Also, since limp→∞ λ(p,µ) = 0

for all µ≥ µo by (3), we have

lim
p→∞

f(p, c,µ)> 0, (EC40)

giving limp→∞
∂
∂p
S(p, c,µ)< 0.

Therefore, for any c ∈ [0, co] and µ ∈ [µo,∞), there exists a unique optimal p∗(c,µ) ∈ (0,∞),

which is obtained by

∂

∂p
S(p∗(c,µ), c, µ) = v (λ(p∗(c,µ), µ))− tµ

(µ−λ(p∗(c,µ), µ))2
− c= 0. (EC41)

This also proves the existence and uniqueness of λ∗(c,µ) defined in (EC33).

Step ii) To prove that there exists a unique µ∈ (µo,∞) that maximizes S(p∗(c,µ), c, µ) for fixed

0≤ c≤ co, we show that (i) S(p∗(c,µ), c, µ) is concave in µ. (ii) limµ↓µo
d
dµ
S(p∗(c,µ), c, µ)> 0 and

(iii) limµ→∞
d
dµ
S(p∗(c,µ), c, µ)< 0. By (7) and (EC8),

d

dµ
S(p∗(c,µ), c, µ) =

(
v(λ∗(c,µ))− tµ

(µ−λ∗(c,µ))2
− c
)
∂

∂µ
λ∗(c,µ) +

tλ∗(c,µ)

(µ−λ∗(c,µ))2
− ∂R(c,µ)

∂µ

=
tλ∗(c,µ)

(µ−λ∗(c,µ))2
− ∂R(c,µ)

∂µ
, (EC42)

where (EC42) follows from (EC41). By Condition 1 and that ∂R(c,µ)

∂µ
is increasing in µ by convexity

of R, d
dµ
S(p∗(c,µ), c, µ) is decreasing; and hence, S(p∗(c,µ), c, µ) is concave in µ. By Condition 2

and (EC42), we have d
dµ
S(p∗(c,µo), c, µo)> 0. Also, by (EC42), convexity of R and λ∗(c,µ)≤Λ by

(3), we get

lim
µ→∞

d

dµ
S(p∗(c,µ), c, µ) = lim

µ→∞
−∂R(c,µ)

∂µ
< 0. (EC43)

Thus, the optimal capacity µ∗(c) given any c∈ (0, co] can be obtained by (EC34).

Step iii) Finally, we show that there is a unique c∈ (0, co) that maximizes S(p∗(c,µ∗(c)), c, µ∗(c)).

Let S∗(c) = S(p∗(c,µ∗(c)), c, µ∗(c)) for notational simplicity. By (7) and (EC8), we have

∂S∗(c)

∂c
=

(
v(λ∗(c,µ∗(c)))− tµ∗(c)

(µ∗(c)−λ∗(c,µ∗(c)))2
− c
)
d

dc
λ∗(c,µ∗(c))
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+

(
tλ∗(c,µ∗(c))

(µ∗(c)−λ∗(c,µ∗(c)))2
− ∂R(c,µ∗(c))

∂µ

)
∂µ∗(c)

∂c
−λ∗(c,µ∗(c))− ∂R(c,µ∗(c))

∂c

=−λ∗(c,µ∗(c))− ∂R(c,µ∗(c))

∂c
, (EC44)

where (EC44) follows from (EC33) and (EC34). By (EC44) and Condition 3, dS∗(c)

dc
is decreasing

and hence S∗(c) is strictly concave in c. In addition, by Conditions 4 and 5, we have dS∗(0)

dc
> 0 and

dS∗(co)

dc
< 0. Thus, there exists a unique global maximum c∗ of S∗(c) and (p∗(c∗, µ∗(c∗)), µ∗(c∗), c∗)

is the unique optimizer of S(c, p,µ) and satisfies the FOCs (11)–(13). Because (EC41), (EC42)

and (EC44) have unique solutions, (p∗(c∗, µ∗(c∗)), µ∗(c∗), c∗) is the unique point that satisfies the

FOCs. �

EC.3.2. Assumptions for Proposition 2

We provide sufficient conditions that guarantee the FOCs of the provider’s profit maximization

problem to be necessary and sufficient under the payment scheme of Proposition 2. Since this is

the problem studied in Shleifer (1985), these conditions were first presented in Shleifer (1985).

Expressed in our notation, these are that R(c,µo) is convex in c and

∂λ(c,µo)

∂c
+
∂2R(c,µo)

∂c2
> 0, (EC45)

along with the boundary conditions

λ(co, µo) +
∂

∂c
R(co, µo)> 0 and λ(0, µo) +

∂

∂c
R(0, µo)< 0. (EC46)

Further to Shleifer (1985), we need to also assume that (EC45) holds for all µ≥ µo. These conditions

ensure that the objective function of the provider is concave and the solution is interior for all

µ≥ µo.

EC.3.3. Assumptions for Theorem 1

We provide sufficient conditions that guarantee the FOCs of the provider’s profit maximization

problem to be necessary and sufficient under the payment scheme of Theorem 1. The provider’s

profit is given by (18) and if R is strictly convex then Π is strictly concave. If, in addition, the

optimal actions for the provider are not at the boundaries, then the FOCs are necessary and

sufficient to determine the provider’s optimal actions. We next present sufficient conditions that

guarantee that the maximum is attained at an interior point.

The following conditions imply that c∗ ∈ (0, co).

∂

∂c
R(co, µ)>−λ(co, µo) and

∂

∂c
R(0, µ)<−Λ, for all µ≥ µo. (EC47)

This follows from (18) because R is convex in c and λ̄i ∈ [λ(co, µo),Λ] for all i.
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To list conditions that are sufficient for µ∗ ∈ (µo,∞) we first introduce some terminology. By (3)

and (16) t
(µ̄i−λ̄i)

≤ v(λmin) for all i= 1, . . . ,N . Hence there exists K > 0 such that

λ̄it

(µ̄i− λ̄i)2
<K.

In addition, this implies that it is never optimal to set µ≥M in any equilibrium for a provider by

(18) for some M > 0. The following conditions are sufficient for µ∗ to be an interior point. Assume

that there exits µK such that ∂
∂µ
R(c,µ)>K for µ≥ µK and for any c∈ [0, co] and that

∂

∂µ
R(c,µo)<

tλ(co, µo)

(M −λ(co, µo))
2 , for all c∈ [0, co]. (EC48)

The fact that µ∗ ∈ (µo,∞) follows from these conditions because; i) R is convex in µ, ii) tλ

(µ−λ(c,µ))2

is minimized at µ= µo and c= co and (iii) M is an upper bound for µ.

EC.3.4. Assumptions for Proposition 4: Regulator’s Second-best Solution

We present sufficient conditions for the FOCs to be necessary and sufficient to obtain the regulators’

optimal (second-best) actions.

Let c̃(µ) be the solution of

∂

∂c
R(c̃(µ), µ) =−λ(µ) for µ≥ µo. (EC49)

We show that c̃(µ) is well-defined in the proof of Proposition EC7 below. We first define Conditions

6–9 that are used in the next proposition.

Condition 6: λ(µ)<−∂R(0,µ)

∂c
for µ≥ µo,

Condition 7: λ(µ)>−∂R(co,µ)

∂c
for µ≥ µo,

Condition 8:
(

tλ(µ)

(µ−λ(µ))2

(
1− ∂λ(µ)

∂µ

)
− c̃(µ)∂λ(µ)

∂µ
− ∂

∂µ
R(c̃(µ), µ)

)
is decreasing for µ≥ µo,

Condition 9:
(

tλ(µo)

(µo−λ(µo))2

(
1− ∂λ(µo)

∂µ

)
− c̃(µo)∂λ(µo)

∂µ

)
− ∂

∂µ
R(c̃(µo), µo)> 0.

Proposition EC7. Conditions 6–9 are sufficient for the FOCs of the regulator’s problem to be

necessary and sufficient to obtain the unique second-best solution.

Conditions 6, 7, and 9 are the boundary conditions that guarantee the second-best outcomes are

interior – similar to Conditions 2, 4, and 5 guaranteeing interior first-best outcomes. In addition,

Condition 8 ensures that if p = 0 then the welfare function is concave in capacity µ when the

provider chooses the optimal marginal cost level c̃(µ) for all µ≥ µo. Sufficient conditions presented

for the first-best (Conditions 1–5) and second-best (Conditions 6–9) solutions are quite different,

despite the fact that the second-best setting can be considered as a special case of the first best.

In fact, only Condition 6 implies Condition 4 because λ∗(0, µ)≤ λ(µ) by (EC33).
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Proof of Proposition EC7: The proof is similar to that of Proposition EC6 in that we first show

that for fixed µ there is a unique optimal cost per patient c̃(µ) and then we show that there is a

unique optimal µ.

If customers are not charged for service, that is, p= 0, given any c∈ (0, co] and µ≥ µo, the welfare

function is S(c,µ), where S is as given in (7) for p= 0 under the M/M/1 assumption. We start

by showing that FOCs are sufficient to obtain the second-best marginal cost (denoted by c̃(µ)) for

fixed µ≥ µo. We prove this by showing that S(·, µ) is concave for fixed µ and c̃(µ) cannot be at

the boundaries. By (7) (with p= 0), we have

∂S(c,µ)

∂c
=−λ(µ)− ∂R(c,µ)

∂c
,
∂2S(c,µ)

∂c2
=−∂

2R(c,µ)

∂c2
. (EC50)

Because R is convex S(·, µ) is concave for fixed µ. Since, in addition, ∂S(0,µ)

∂c
> 0 and ∂S(co,µ)

∂c
< 0

by Conditions 6 and 7, given any µ≥ µo there exists a unique c̃(µ)∈ (0, co) that is obtained by the

FOCs and it satisfies (EC49).

We next show that the FOCs are sufficient to obtain the maximum of S(c̃(µ), µ) by showing that

it is concave and the optimal is attained at an interior point. By (7) and (EC8), we have

d

dµ
S(c̃(µ), µ) =

(
v(λ(µ))− t

µ−λ(µ)

)
∂λ(µ)

∂µ
−
(
λ(µ) +

∂R(c̃(µ), µ)

∂c

)
∂c̃(µ)

∂µ

+
tλ(µ)

(µ−λ(µ))2

(
1− ∂λ(µ)

∂µ

)
− c̃(µ)

∂λ(µ)

∂µ
− ∂

∂µ
R(c̃(µ), µ)

=
tλ(µ)

(µ−λ(µ))2

(
1− ∂λ(µ)

∂µ

)
− c̃(µ)

∂λ(µ)

∂µ
− ∂

∂µ
R(c̃(µ), µ), (EC51)

where (EC51) follows from (3) and (EC49). By (EC51) and Condition 8, d
dµ
S(c̃(µ), µ) is decre-

asing in µ and hence S(c̃(µ), µ) is concave. By (EC51) and Condition 9, d
dµ
S(c̃(µo), µo) > 0.

Also, because limµ→∞
tλ(µ)

(µ−λ(µ))2
= 0, dλ(µ)

dµ
≥ 0 by (3) and c̃(µ) > 0 as discussed above, we have

limµ→∞
d
dµ
S(c̃(µ), µ)≤ limµ→∞− ∂

∂µ
R(c̃(µ), µ)< 0. Hence µ∗o ∈ (µo,∞). Clearly (c̃(µ∗o), µ

∗
o) maximi-

zes S and is the unique solution that satisfies the FOCs under Conditions 6–9. �

EC.3.5. Assumptions for Theorem 2

We provide sufficient conditions that guarantee the FOCs of the providers’ profit maximization

problem to be necessary and sufficient under the payment scheme of Theorem 2, which yields the

profit function in (24).

We claim that if

i) cλ(µ) +R(c,µ) is jointly convex in c and µ,

ii) v is convex,

iii) 1
v

is convex,
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then Π(c,µ) in (24) is concave. Clearly, if cλ(µ) + R(c,µ) is convex, it suffices to show that

W (λ(µ), µ) is convex to prove the the concavity of Π(c,µ). By (2)

d2

dµ2
W (λ(µ), µ) = (λ′(µ))2v′′(λ(µ)) +λ′′(µ)v′(λ(µ)). (EC52)

Because v′(λ(µ))< 0 by definition, it is enough to show that λ′′(µ)< 0 to prove the concavity of W .

We note that 1
v

implies λ′′(µ)< 0 because λ(µ) = µ− t
v(λ(µ))

by (2). Hence, if the optimal is attained

at an interior point (i)–(iii) guarantee that the FOCs are necessary and sufficient to determine the

provider’s profit-maximizing actions. We next provide sufficient conditions that imply that this is

the case.

Similar to (EC47) assume that

∂

∂c
R(co, µ)>−λ(µo) and

∂

∂c
R(0, µ)<−Λ, for all µ≥ µo. (EC53)

Conditions (EC53) imply that c∗o ∈ (0, co) by (24) because R is convex in c and λi ∈ [λ(µo),Λ] for

all i= 1, . . . ,N .

The following conditions imply that µ∗o ∈ (µo,∞) by (24) because R is convex in µ. Assume that

∂

∂µ
R(c,µo)< (−c−λ(µo)v

′(λ(µo)))λ
′(µo) (EC54)

and

lim
µ̃→∞

∂

∂µ
R(c, µ̃)> lim

µ̃→∞
− (Λv′(λ(µ̃))λ′(µ̃)) (EC55)

for all c∈ [0, co], where v is defined as in (EC9).

EC.4. Alternative Payment Scheme for First-best with a Unique
Equilibrium

In this section we first present an alternative scheme that achieves first-best outcomes in the unique

symmetric equilibrium. Then we show that a modified version of this scheme leads to a unique

equilibrium, that is, the unique symmetric equilibrium that achieves first-best outcomes is the only

equilibrium.

For λ,µ≥ 0 let Ψi :R2
+→R be defined as

Ψi(λ,µ) =

{
W (λ,µ), if µ≥ λ,
W̄i + c̄iλ+R̄i

tλ
, if µ< λ,

(EC56)

for given W̄i, c̄i and R̄i and also let the transfer payment, Ti, to provider i be

Ti = R̄i + (c̄i− ci)λ̄i− tλ2
i

∂

∂λ
W (λi, µi)− tλ̄i(Ψi(λ̄i, µi)−Wi). (EC57)
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If, in addition, the toll is set as in (16) the ith provider’s objective becomes

Π(ci, µi|pi, Ti) = (c̄i− ci)λ̄i− tλ̄i(Ψi(λ̄i, µi)−Wi)−R(ci, µi) + R̄i. (EC58)

Before we establish the equilibrium under this payment system, we note that, for a given λ̄i provider

i will never choose µi ≤ λ̄i because by (EC56) its profit will be negative, and it can always set

ci = c̄i and µi = µ̄i to obtain zero profits. Therefore we assume, without loss of generality, that

µi ≥ λ̄i. Also if µi ≥ λ̄i

Π(ci, µi|pi, Ti) = (c̄i− ci)λ̄i− tλ̄i(W (λ̄i, µi)− W̄i)−R(ci, µi) + R̄i (EC59)

by (EC56) and (24). For the rest of this section we assume that FOCs are necessary and sufficient

for determining the optimal actions of the provider and the waiting time function satisfies the

following assumption.

Assumption 1. We assume that ∂2

∂λ2W (λ,µ)> 0, ∂2

∂µ2W (λ,µ)> 0, and ∂2W (λ,µ)

∂µ∂λ
≤ 0.

Proposition EC8. If the regulator sets service provider i’s price equal to pi given in (16) and

transfer payment equal to Ti given in (EC57), then the unique symmetric Nash equilibrium is for

each provider i to pick ci = c∗ and µi = µ∗, for i= 1, ...,N . Also, all providers make zero profit in

equilibrium.

Proof of Proposition EC8: Provider i’s optimal actions are obtained by

∂

∂ci
Π(ci, µi|pi, Ti) =−λ̄i−

∂

∂ci
R(ci, µi) = 0, (EC60)

∂

∂µi
Π(ci, µi|pi, Ti) =− ∂

∂µi
R(ci, µi)− tλ̄i

∂

∂µi
W (λ̄i, µi) = 0. (EC61)

Because first-best marginal cost, c∗, and capacity, µ∗, satisfy (10)–(12), the case where ci = c∗ and

µi = µ∗ for all i= 1, . . . ,N is clearly an equilibrium. Also, similar to the proof of Theorem 1, there

cannot exist a different symmetric solution because c∗ and µ∗ are the unique solution to (10)–(12).

Hence, there exists a unique symmetric equilibrium that yields first-best outcomes. �

Next we show that if N = 2 there cannot be an asymmetric equilibrium.

Proposition EC9. Assume that N = 2 and ∂2R(c,µ)

∂c∂µ
≥ 0. Under the payment scheme in Propo-

sition EC8 there exists a unique equilibrium.

We need the following result to prove Proposition EC9.

Proposition EC10. Consider the payment scheme in Proposition EC8 and assume that

∂2R(c,µ)

∂c∂µ
≥ 0 and N = 2. Let (c̃i, µ̃i) for i= 1,2 denote an equilibrium and λ̃i = λ(pi, µ̃i) be given by

(2) where pi is defined as in (16). If λ̃1 > λ̃2 > 0 then µ̃1 > µ̃2 and c̃1 < c̃2.
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Proof of Proposition EC9: Similar to the proof of Proposition EC8, we only consider µi ≥ λ̄i.

By (4) if provider j choses action (c̃j, µ̃j) provider i’s profit function is

Π(ci, µi|pi, Ti) = (c̃j − ci)λ̃j −R(ci, µi) +R(c̃j, µ̃j)− tλ̃j(W (λ̃j, µi)−W (λ̃j, µ̃j)). (EC62)

We next show that an asymmetric equilibrium does not exist when N = 2. Let (µ̃i, c̃i) denote

the action chosen by provider i and λ̃i = λ(p̃i, µ̃i) be given by (2) where pi is defined as in (16)

Assume that λ̃1 = λ̃2. By (EC60) and (EC62)

∂R(c̃1, µ̃1)

∂c
=−λ̃2 =−λ̃1 =

∂R(c̃2, µ̃2)

∂c
. (EC63)

By convexity of R if µ̃1 = µ̃2, then c̃1 = c̃2. Hence, a potential asymmetric equilibrium with λ̃1 = λ̃2

must have µ̃1 6= µ̃2. Without loss of generality we assume µ̃1 < µ̃2. By (2), λ̃1 = λ̃2 implies p1 < p2

because W (λ̃1, µ̃1)>W (λ̃2, µ̃2) when µ̃1 < µ̃2 and λ̃1 = λ̃2. By (16), p1 < p2 implies c̃1 < c̃2 because

∂

∂λ
W (λ̃1, µ̃1)≥ ∂

∂λ
W (λ̃2, µ̃2)

by Assumption 1. Because c̃1 < c̃2 and µ̃1 < µ̃2,

∂R(c̃1, µ̃1)

∂c
<
∂R(c̃2, µ̃2)

∂c

by convexity of R and ∂2R(c,µ)

∂c∂µ
≥ 0. Because this contradicts (EC63), an asymmetric equilibrium

with λ1 = λ2 does not exist.

Next we consider the case λ̃1 6= λ̃2 and assume without loss of generality that λ̃1 > λ̃2. Then, by

Proposition EC10 we have µ̃1 > µ̃2. By Assumption 1, λ̃1 > λ̃2 and µ̃1 > µ̃2 imply

W (λ̃1, µ̃2)−W (λ̃1, µ̃1)>W (λ̃2, µ̃2)−W (λ̃2, µ̃1). (EC64)

By (EC62), if Π(c̃1, µ̃1|p1, T1)≥ 0 then

λ2

(
c̃2− c̃1 + t(W (λ̃2, µ̃2)−W (λ̃2, µ̃1))

)
≥R(c̃1, µ̃1)−R(c̃2, µ̃2).

This with (EC64), implies

λ̃2

(
c̃2− c̃1 + t(W (λ̃1, µ̃2)−W (λ̃1, µ̃1))

)
>R(c̃1, µ̃1)−R(c̃2, µ̃2). (EC65)

Then because λ̃1 > λ̃2, (EC65) and (EC62) imply Π(c̃2, µ̃2|p2, T2)< 0. Hence, an asymmetric equi-

librium where two providers experience different equilibrium arrival rates does not exist. �
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Proof of Proposition EC10: Let (c̃i, µ̃i) for i= 1,2 denote an equilibrium and λ̃i = λ(pi, µ̃i) be

given by (2). Assume that λ̃1 > λ̃2 > 0. We first show that µ̃1 > µ̃2 by contradiction. We show below

that

∂R(c̃1, µ̃1)

∂c
<
∂R(c̃2, µ̃2)

∂c
(EC66)

if µ̃1 ≤ µ̃2. By (EC62), provider i’s optimal action in equilibrium satisfies

∂

∂ci
Π(c̃i, µ̃i|pi, Ti) =−λ̃j −

∂R(c̃i, µ̃i)

∂c
= 0, for j 6= i.

Because λ̃1 > λ̃2, we have
∂R(c̃1, µ̃1)

∂c
=−λ̃2 >−λ̃1 =

∂R(c̃2, µ̃2)

∂c
,

which contradicts (EC66). Hence, if λ̃1 > λ̃2, µ̃1 ≤ µ̃2 cannot hold.

Next we prove (EC66) if µ̃1 ≤ µ̃2. If λ̃1 > λ̃2 and µ̃1 ≤ µ̃2 then by (2)

(p1 + tW (λ̃1, µ̃1))< (p2 + tW (λ̃2, µ̃2)), (EC67)

where p1 and p2 are given in (16). Because λ̃1 > λ̃2 and µ̃1 ≤ µ̃2, we have W (λ̃1, µ̃1)>W (λ̃2, µ̃2).

This implies p1 < p2 by (EC67). By (16), p1 < p2 implies

c̃1 + tλ̃1

∂

∂λ
W (λ̃1, µ̃1)< c̃2 + tλ̃2

∂

∂λ
W (λ̃2, µ̃2). (EC68)

By Assumption 1 and that λ̃1 > λ̃2 and µ̃1 ≤ µ̃2, we have ∂W (λ̃1,µ̃1)

∂λ
> ∂W (λ̃2,µ̃2)

∂λ
. This and λ̃1 > λ̃2

imply that if p1 < p2 then c̃1 < c̃2 by (EC68). Because µ̃1 ≤ µ̃2 and c̃1 < c̃2 (EC66) holds by convexity

of R and ∂2R(c,µ)

∂c∂µ
≥ 0.

We now show that c̃1 < c̃2 if λ̃1 > λ̃2. By (EC62) provider i’s action satisfies

∂R(c̃i, µ̃i)

∂µ
=−tλ̃j

∂

∂µ
W (λ̃j, µ̃i) (EC69)

in any equilibrium. By Assumption 1, and the fact that λ̃1 > λ̃2 and µ̃1 > µ̃2, we have

∂

∂µ
W (λ̃1, µ̃2)<

∂

∂µ
W (λ̃2, µ̃1).

Therefore (
−λ̃1

∂

∂µ
W (λ̃1, µ̃2)

)
>

(
−λ̃2

∂

∂µ
W (λ̃2, µ̃1)

)
.

Thus by (EC69) we have

∂R(c̃2, µ̃2)

∂µ
>
∂R(c̃1, µ̃1)

∂µ
. (EC70)
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Also, by the fact that µ1 >µ2 and R is convex

∂R(c̃2, µ̃1)

∂µ
>
∂R(c̃2, µ̃2)

∂µ
. (EC71)

By (EC70) and (EC71),

∂R(c̃2, µ̃1)

∂µ
>
∂R(c̃1, µ̃1)

∂µ
.

This implies c̃2 > c̃1 by ∂2R(c,µ)

∂c∂µ
≥ 0. �

We finally consider the case with N ≥ 3. Assume that providers are divided into two disjoint sets

A1 and A2. For simplicity, assume that A1 = {1,2, . . . , n1} and A2 = {n1 + 1, . . . ,N}, for n1 ≥ 1.

For i∈A1, set

c̄i
A1 =

1

|A2|
∑
j∈A2

cj, λ̄i
A1 =

1

|A2|
∑
j∈A2

λj, R̄i
A1 =

1

|A2|
∑
j∈A2

Rj, W̄i
A1 =

1

|A2|
∑
j∈A2

Wj.

Also set the transfer payment for hospital i equal to Ti defined as in (EC57) using c̄i
A1 , λ̄i

A1 ,

W̄A1
i and R̄A1

i as defined above. Effectively, we use providers in set A2 to set the “yardstick” for

providers in set A2 and we can set similar targets for those provider in set A2 using providers in

set A1.

When providers are split into two sets A1 and A2, the providers in the same set would take the

same actions since their profit functions are identical. Hence, the comparison of providers in two

sets would reduce to the case of N = 2, and the unique symmetric equilibrium which yields the

first-best outcomes for all providers would be the unique equilibrium by Proposition EC9.

EC.5. Alternative Payment Scheme for Second-best with a Unique
Equilibrium

In this section we prove that, under the proposed reimbursement scheme of §4.4, there cannot be

an asymmetric equilibrium for N = 2. Then, we alter the proposed reimbursement scheme slightly

to obtain a new scheme under which the welfare maximising actions are the unique equilibrium.

Proposition EC11. Assume that there are only two providers (i.e., N = 2) and the regulator

pays the transfer payment Ti defined as in (23) to provider i for i= 1,2. Then there is a unique

Nash equilibrium.

Proof of Proposition EC11: By Theorem 2 the only symmetric equilibrium is where providers

pick µ∗o and c∗o. We next prove that, for N = 2, this is the unique equilibrium. Assume not and

let a1 = (c1, µ1) and a2 = (c2, µ2) denote another equilibrium with a1 6= a2. Under the proposed

reimbursement scheme, the profits of providers 1 and 2 are given by

Π(c1, µ1) =−c1λ(µ1) + t(W2−W1)λ(µ2)−R(c1, µ1) +R(c2, µ2) + c2λ(µ2). (EC72)
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Π(c2, µ2) =−c2λ(µ2) + t(W1−W2)λ(µ2)−R(c2, µ2) +R(c1, µ1) + c1λ(µ1). (EC73)

In order for (a1, a2) to be an equilibrium, we must have Π(c1, λ1)≥ 0 and Π(c2, λ2)≥ 0 because

if a2 = a1, then Π(c2, µ2) = 0. We next show that this is not possible in an asymmetric equilibrium.

Assume without loss of generality that λ(µ1)> λ(µ2). This implies W1 <W2 by (2), since p= 0.

By (EC72)

t(W2−W1)λ(µ2)≥ c1λ(µ1) +R(c1, λ(µ1))−R(c2, λ(µ2))− c2λ(µ2). (EC74)

Hence

Π(c2, µ2) =−c2λ(µ2)+t(W1−W2)λ(µ1)−R(c2, λ(µ2)) +R(c1, λ(µ1)) + c1λ(µ1)

(a)

< −c2λ(µ2) + t(W1−W2)λ(µ2)−R(c2, λ(µ2)) +R(c1, λ(µ1)) + c1λ(µ1)
(b)

≤ 0,

where (a) above follows from the fact that W1 <W2 and λ(µ1)>λ(µ2), and (b) follows from (EC74).

This proves that (a1, a2) cannot be an equilibrium if λ1 6= λ2. �

A regulatory scheme with a unique equilibrium for N ≥ 3: If N ≥ 3, we can modify

the reimbursement scheme so that the only equilibrium is the second best. Specifically, as in

Appendix EC.4 we divide the providers into two disjoint sets A1 and A2. For simplicity assume

that A1 = {1,2, . . . , n1} and A2 = {n1 + 1, . . . ,N} for n1 ≥ 1. For i∈A1 set

W̄A1
i =

1

|A2|
∑
j∈A2

Wj and λ̄A1
i =

1

|A2|
∑
j∈A2

λj.

Again, set the transfer payment for hospital i∈A1 equal to Ti defined as in (23) using W̄A1
i and λ̄A1

i

as defined above. Effectively, we use providers in set A2 to set the “yardstick” for providers in set

A2 and similarly we can use providers in set A2 to set the “yardstick” for providers in set A2. The

proof that this mechanism can only have a unique equilibrium where each provider picks socially

optimal levels µ∗o and c∗o follows from a similar argument to that at the end of Appendix EC.4

using Theorem 2 and Proposition EC11. In addition, we conjecture that, for N large enough, the

original mechanism should also have a unique equilibrium. This follows from the fact that when N

is large, W̄i ∼ W̄j for all i, j. The proof outlined above for the modified mechanism might be used

when this is the case to prove the uniqueness of the symmetric equilibrium.
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